В настоящем протоколе описаны тесты на инфекции для исследования приверженности шигелл , инвазии и внутриклеточной репликации с использованием эпителиальных клеточных линий in vitro .
Адаптированный к человеку кишечный бактериальный патоген шигелла вызывает миллионы инфекций каждый год, создает долгосрочные эффекты роста среди педиатрических пациентов и является основной причиной смерти от диареи во всем мире. Инфекция вызывает водянистую или кровавую диарею в результате того, что патоген проходит через желудочно-кишечный тракт и инфицирует эпителиальные клетки, выстилающие толстую кишку. В условиях ошеломляющего роста устойчивости к антибиотикам и отсутствия в настоящее время одобренных вакцин стандартизированные протоколы исследований имеют решающее значение для изучения этого грозного патогена. Представлены методики изучения молекулярного патогенеза шигелл с использованием in vitro анализа бактериальной адгезии, инвазии и внутриклеточной репликации в эпителиальных клетках толстой кишки. Перед проведением анализа инфекции фенотип вирулентности колоний шигелл был проверен путем поглощения красного красителя Конго на агаровых пластинах. Во время бактериального культивирования также можно рассмотреть возможность использования дополнительных лабораторных сред для имитации условий in vivo . Затем бактериальные клетки используются в стандартизированном протоколе для инфицирования эпителиальных клеток толстой кишки в тканевых культуральных планшетах при установленной множественности инфекции с адаптацией для анализа каждой стадии инфекции. Для анализа на адгезию клетки шигелл инкубируют с пониженными уровнями среды, чтобы способствовать контакту бактерий с эпителиальными клетками. Как для инвазий, так и для внутриклеточной репликации гентамицин применяется в течение различных временных интервалов для уничтожения внеклеточных бактерий и обеспечения возможности оценки инвазии и/или количественной оценки скорости внутриклеточной репликации. Во всех протоколах инфекции перечисляются адгезивные, инвазированные и/или внутриклеточные бактерии путем последовательного разбавления лизатов инфицированных эпителиальных клеток и нанесения бактериальных колониеобразующих единиц относительно титров инфекции на пластинах из конголезского красного агара. Вместе эти протоколы позволяют проводить независимые характеристики и сравнения для каждой стадии инфекции эпителиальных клеток шигеллами для успешного изучения этого патогена.
Диарейные заболевания, вызываемые кишечными бактериальными патогенами, представляют собой серьезное глобальное бремя для здравоохранения. В 2016 г. диарейные заболевания стали причиной 1,3 миллиона случаев смерти во всем мире и были четвертой по значимости причиной смерти детей в возрасте до пяти лет. Грамотрицательный кишечный бактериальный патоген шигелла является возбудителем шигеллеза, основной причины смерти от диареи во всем мире3. Шигеллез ежегодно вызывает значительную заболеваемость и смертность среди детей из стран с низким и средним уровнем дохода 4,5, в то время как инфекции в странах с высоким уровнем дохода связаны со вспышками в детских садах, пищевых продуктах и водным путем 6,7,8,9. Неэффективная разработкавакцин10 и растущие показатели устойчивости к противомикробным препаратам (УПП)11,12 осложняют борьбу с крупномасштабными вспышками шигеллы. Последние данные Центров по контролю и профилактике заболеваний показывают, что почти 46% инфекций шигелл в Соединенных Штатах проявили лекарственную устойчивость в 2020 году13,14, в то время как Всемирная организация здравоохранения объявила шигеллы приоритетным патогеном УПП, для которого срочно необходимы новые методылечения15.
Шигелла-инфекции легко передаются фекально-оральным путем при употреблении зараженной пищи или воды или при прямом контакте с человеком. Шигеллы эволюционировали, чтобы стать эффективным, адаптированным к человеку патогеном, с инфекционной дозой 10-100 бактерий, достаточной для того, чтобы вызвать заболевание16. Во время транзита в тонком кишечнике шигеллы подвергаются воздействию сигналов окружающей среды, таких как повышенная температура и желчь17. Обнаружение этих сигналов индуцирует транскрипционные изменения для экспрессии факторов вирулентности, которые усиливают способность бактерий инфицировать толстую кишку человека 17,18,19. Шигеллы не проникают в эпителий толстой кишки с апикальной поверхности, а проходят через эпителиальный слой после поглощения в специализированные антигенпрезентирующие микроскладчатые клетки (М-клетки) в фолликул-ассоциированном эпителии 20,21,22. После трансцитоза клетки шигелл фагоцитируются резидентными макрофагами. Шигеллы быстро ускользают из фагосомы и запускают гибель клеток макрофагов, что приводит к высвобождению провоспалительных цитокинов 5,23,24. Затем шигеллы вторгаются в эпителиальные клетки толстой кишки с базолатеральной стороны, лизируют макропиноцитарную вакуоль и создают репликативную нишу в цитоплазме 5,25. Провоспалительные цитокины, особенно интерлейкин-8 (IL-8), рекрутируют полиморфноядерные нейтрофильные лейкоциты (ПМН) к месту инфекции, что ослабляет эпителиальные плотные соединения и позволяет бактериальной инфильтрации эпителиальной выстилки усугублять базолатеральную инфекцию5. ПМН разрушают инфицированную эпителиальную выстилку, чтобы сдержать инфекцию, что приводит к характерным симптомам бациллярной (кровяной) дизентерии5. Несмотря на то, что механизмы инвазии и внутриклеточной репликации были тщательно охарактеризованы, новые исследования демонстрируют важные новые концепции в отношении инфекции шигелл, включая регуляцию вирулентности во время желудочно-кишечного транзита (ЖКТ)17, приверженность к лечению19, улучшенный базолатеральный доступ через барьерную проницаемость26 и бессимптомное носительство у детей с недостаточностью питания27.
Способность Shigella spp. вызывать диарейные заболевания ограничена людьми и нечеловекообразными приматами (NHP)28. Были разработаны модели кишечных инфекций шигелл для рыбок данио29, мышей30, морских свинок31, кроликов 21,32,33 и свиней34,35. Однако ни одна из этих модельных систем не может точно воспроизвести характеристики заболевания, наблюдаемые при инфицировании человека36. Несмотря на то, что для изучения патогенеза шигелл были созданы NHP-модели, эти модельные системы являются дорогостоящими в реализации и требуют искусственно высоких инфекционных доз, на девять порядков превышающих инфекционную дозу человека 37,38,39,40,41,42. Таким образом, замечательная адаптация шигелл к инфекции человека-хозяина обусловливает необходимость использования культур клеток человеческого происхождения для воссоздания физиологически релевантных моделей для точного исследования патогенеза шигелл.
Здесь подробно описаны процедуры для измерения скорости адгезии шигелл , инвазии и репликации в эпителиальных клетках толстой кишки HT-29. Используя эти стандартизированные протоколы, можно исследовать молекулярные механизмы, с помощью которых гены вирулентности бактерий и сигналы окружающей среды влияют на каждый этап инфекции шигелл , чтобы лучше понять динамическую взаимосвязь между хозяином и патогеном.
Этот протокол описывает набор из трех стандартизированных анализов для изучения адгезии шигелл, инвазии и внутриклеточной репликации эпителиальных клеток кишечника. Несмотря на то, что эти методы являются всего лишь модифицированными версиями классических гентамициновых анали…
The authors have nothing to disclose.
Поддержку авторам оказывают Отделение педиатрии Массачусетской больницы общего профиля, грант Исполнительного комитета по временному финансированию исследований (ISF) 2022A009041, грант Национального института аллергии и инфекционных заболеваний R21AI146405 и грант Национального института диабета и заболеваний пищеварительной системы и почек Исследовательский центр питания и ожирения в Гарварде (NORCH) 2P30DK040561-26. Спонсоры не играли никакой роли в планировании исследования, сборе и анализе данных, принятии решения о публикации или подготовке рукописи.
0.22 μm PES filter | Millipore-Sigma | SCGP00525 | Sterile, polyethersulfone filter for sterilizing up to 50 mL media |
14 mL culture tubes | Corning | 352059 | 17 mm x 100 mm polypropylene test tubes with cap |
50 mL conical tubes | Corning | 430829 | 50 mL clear polypropylene conical bottom centrifuge tubes with leak-proof cap |
6-well tissue culture plates | Corning | 3516 | Plates are treated for optimal cell attachment |
Bile salts | Sigma-Aldrich | B8756 | 1:1 ratio of cholate to deoxycholate |
Congo red dye | Sigma-Aldrich | C6277 | A benzidine-based anionic diazo dye, >85% purity |
Countess cell counting chamber slide | Invitrogen | C10283 | To be used with the Countess Automated Cell Counter |
Dimethyl sulfoxide (DMSO) | Sigma-Aldrich | D8418 | A a highly polar organic reagent |
Dulbecco’s Modified Eagle Medium (DMEM) | Gibco | 10569-010 | DMEM is supplemented with high glucose, sodium pyruvate, GlutaMAX, and Phenol Red |
Fetal Bovine Serum (FBS) | Sigma-Aldrich | F4135 | Heat-inactivated, sterile |
Gentamicin | Sigma-Aldrich | G3632 | Stock concentration is 50 mg/mL |
HT-29 cell line | ATCC | HTB-38 | Adenocarcinoma cell line; colorectal in origin |
Paraffin film | Bemis | PM999 | Laboratory sealing film |
Petri dishes | Thermo Fisher Scientific | FB0875713 | 100 mm x 15 mm Petri dishes for solid media |
Phosphate-buffered saline (PBS) | Thermo Fisher Scientific | 10010049 | 1x concentration; pH 7.4 |
Select agar | Invitrogen | 30391023 | A mixture of polysaccharides extracted from red seaweed cell walls to make bacterial plating media |
T75 flasks | Corning | 430641U | Tissue culture flasks |
Triton X-100 | Sigma-Aldrich | T8787 | A common non-ionic surfactant and emulsifier |
Trypan blue stain | Invitrogen | T10282 | A dye to detect dead tissue culture cells; only live cells can exclude the dye |
Trypsin-EDTA | Gibco | 25200-056 | Reagent for cell dissociation for cell line maintenance and passaging |
Tryptic Soy Broth (TSB) | Sigma-Aldrich | T8907 | Bacterial growth media |