Summary

阳离子纳米乳液包封的视黄酸作为佐剂,促进 OVA 特异性全身和粘膜反应

Published: February 23, 2024
doi:

Summary

在该方案中,我们开发了一种阳离子纳米乳液包封的视黄酸 (RA),用作佐剂以促进抗原特异性全身和粘膜反应。通过将 FDA 批准的 RA 添加到纳米乳液中,肌肉注射纳米乳剂后,抗原特异性 sIgA 在阴道和小肠中得到促进。

Abstract

阳离子纳米结构已成为一种佐剂和抗原递送系统,可增强树突状细胞成熟、ROS 生成和抗原摄取,然后促进抗原特异性免疫反应。近年来,视黄酸(RA)因其激活粘膜免疫反应的作用而受到越来越多的关注;然而,为了将RA用作粘膜佐剂,有必要解决其溶解、加载和输送的问题。在这里,我们描述了一种阳离子纳米乳包封的视黄酸(CNE-RA)输送系统,由阳离子脂质1,2-二油酰基-sn-甘油-3-磷酸胆碱(DOTAP)、视黄酸、角鲨烯作为油相、聚山梨醇酯80作为表面活性剂和脱水山梨糖醇三油酸酯85作为辅助表面活性剂组成。利用动态光散射和分光光度计对其物理和化学性质进行了表征。与单独使用OVA相比,用抗原(卵清蛋白,OVA)和CNE-RA的混合物免疫小鼠显着升高了小鼠阴道灌洗液和小肠灌洗液中抗OVA分泌免疫球蛋白A(sIgA)的水平。该协议描述了用于制备,表征和评估CNE-RA佐剂效果的详细方法。

Introduction

佐剂通常用于通过刺激免疫系统对疫苗做出更强烈的反应来增强疫苗的功效,从而提高对特定病原体的免疫力1.纳米乳液(NE)助剂是指通过乳化一定比例的油相和水相,产生油包水(W/O)或水包油(O/W)2形式的乳液,具有热力学稳定性的胶体分散体系。O/W纳米乳液佐剂可在注射部位产生细胞因子和趋化因子,诱导单核细胞、中性粒细胞、嗜酸性粒细胞等重要免疫细胞的快速聚集和增殖,增强免疫应答,提高抗原的免疫原性3。目前,三种纳米乳剂佐剂(MF59、AS03和AF03)已获准用于疫苗,并显示出良好的安全性和有效性4

然而,目前在常规胃肠外疫苗接种中许可的佐剂制剂对粘膜免疫问题处理得很差5.据报道,维甲酸 (RA) 可诱导免疫细胞肠道归巢,但其极性低、在水中的溶解度差以及光稳定性和热稳定性差限制了其用于稳健的肠道疫苗接种。纳米乳液为提高高亲脂性药物的生物利用度提供了机会,而 O/W 乳液佐剂的油芯适用于溶解 RA6 等非极性物质。因此,纳米乳剂可以作为RA的载体,以达到全身免疫和黏膜免疫的双重反应效果。

与中性或阴离子递送系统相比,阳离子递送系统具有相对高效的抗原包封和递送能力,可以增强抗原的免疫原性7,8,9。各种佐剂体系的阳离子表面电荷对其佐剂效果很重要 10,11,12。阳离子电荷是延长疫苗在注射部位的保留时间、增加抗原呈递和延长体内细胞免疫刺激的重要因素12.

基于上述考虑,我们开发了一种阳离子纳米乳液,可有效共递送RA和抗原。利用动态光散射(DLS)法测定纳米乳液的粒径和zeta电位,并通过肌内注射13评价纳米乳液联合OVA的全身和粘膜免疫反应。

Protocol

动物实验按照《实验动物使用和护理指南》进行,并经第三军医大学实验动物福利和伦理委员会批准。 1.纳米乳液(NEs)的制备 对于水相制备,在40°C下搅拌时,将0.15g聚山梨酯80溶解在28.2mL磷酸盐缓冲盐水(PBS)中。 对于油相制备,使用 表1所示的纳米乳液的油相配方。在40°C下搅拌时,将sornitan trileate 85,DOTAP和RA溶解在角鲨烯中。</l…

Representative Results

总共制备了四种纳米乳液制剂,其粒径(图1)、zeta电位和包封效率均进行了表征,如 表2所示。粒径集中在160-190nm附近,DOTAP的加入逆转了纳米乳液的Zeta电位。第三次免疫后 2 周检测 OVA 特异性血清 IgG 及其血清亚组抗体水平。纳米乳佐剂疫苗显着增加了血清中OVA特异性IgG,IgG1和IgG 2a抗体滴度(图2)。更重要的是,当OVA与CNE-RA佐剂时,阴?…

Discussion

在该协议中,我们开发了一种阳离子纳米乳液包封的视黄酸,用作佐剂以促进抗原特异性全身和粘膜反应。与传统的NE佐剂相比,它具有以下两个优点。首先,一般来说,O/W NEs的表面具有高负电荷,这使得直接负载抗原变得困难。阳离子NEs能有效吸附肽或蛋白抗原,增强特异性免疫原性。其次,传统疫苗研究的经验表明,皮下注射或肌肉注射很难刺激粘膜反应5。通过将 FDA 批准?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

本研究由重庆市自然科学基金重点项目(CSTC2020jcyj-zdxmX0027)和国家自然科学基金项目(第32270988号)资助。

Materials

1640 medium GIBCO, USA C11875500BT
450 nm Stop Solution for TMB Substrate Abcam ab171529-1000 mL
Automated Cell Counter Countstar, China IC1000
BSA Sigma-Aldrich, USA B2064-100G
Centrifuge 5810 R Eppendorf, Germany 5811000398
Danamic Light Scattering Malvern Zetasizer Nano S90
DOTAP CordenPharma, Switzerland O02002
ELISpot Plus: Mouse IFN-gamma (ALP) mabtech ab205719
Fetal Bovine Serum GIBCO, USA 10099141C
Full-function Microplate Reader Thermo Fisher Scientific, USA VL0000D2
Goat Anti-Mouse IgG1(HRP) Abcam ab97240-1mg
Goat Anti-Mouse IgA alpha chain (HRP) Abcam ab97235-1mg
Goat Anti-Mouse IgG H&L (HRP) Abcam Ab205720-500ug
Goat Anti-Mouse IgG2a heavy chain (HRP) Abcam ab97245-1mg
High pressure homogenizer ATS
MONTANE 85 PPI SEPPIC, France L12910
MONTANOX 80 PPI SEPPIC, France 36372K
OVA257–264 Shanghai Botai Biotechnology Co., Ltd. NA
OVA323-339 Shanghai Botai Biotechnology Co., Ltd. NA
Phosphate buffer saline ZSGB-bio ZLI-9061
Red Blood Cell Lysis Buffer Solarbio, China R1010
retinoic acid TCI, Japan TCI-R0064-5G
Squalene Sigma, USA S3626
T10 basic Ultra-Turrax IKA, Germany
TMB ELISA Substrate Abcam ab171523-1000ml
trypsin inhibitor Diamond A003570-0100
Tween-20 Macklin, China 9005-64-5
Ultraviolet spectrophotometer Hitachi U-3900

References

  1. Pulendran, B., Arunachalam, P. S., O’Hagan, D. T. Emerging concepts in the science of vaccine adjuvants. Nat Rev Drug Discov. 20 (6), 454-475 (2021).
  2. Pandey, P., Gulati, N., Makhija, M., Purohit, D., Dureja, H. Nanoemulsion: A novel drug delivery approach for enhancement of bioavailability. Recent Pat Nanotech. 14 (4), 276-293 (2020).
  3. Chen, W. L., et al. Disintegration and cancer immunotherapy efficacy of a squalane-in-water delivery system emulsified by bioresorbable poly(ethylene glycol)-block-polylactide. Biomaterials. 35 (5), 1686-1695 (2014).
  4. Iwasaki, A., Omer, S. B. Why and how vaccines work. Cell. 183 (2), 290-295 (2020).
  5. Spadoni, I., Fornasa, G., Rescigno, M. Organ-specific protection mediated by cooperation between vascular and epithelial barriers. Nat Rev Immunol. 17 (12), 761-773 (2017).
  6. Singh, Y., et al. Nanoemulsion: Concepts, development and applications in drug delivery. J Cont Release. 252, 28-49 (2017).
  7. Yan, W. L., Chen, W. S., Huang, L. Mechanism of adjuvant activity of cationic liposome: Phosphorylation of a MAP kinase, ERK and induction of chemokines. Mol Immunol. 44 (15), 3672-3681 (2007).
  8. Korsholm, K. S., et al. The adjuvant mechanism of cationic dimethyldioctadecylammonium liposomes. Immunology. 121 (2), 216-226 (2007).
  9. Agger, E. M., et al. Cationic liposomes formulated with synthetic mycobacterial cordfactor (CAF01): A versatile ddjuvant for vaccines with different immunological requirements. Plos One. 3 (9), e3116 (2008).
  10. Slutter, B., et al. Nasal vaccination with N-trimethyl chitosan and PLGA based nanoparticles: Nanoparticle characteristics determine quality and strength of the antibody response in mice against the encapsulated antigen. Vaccine. 28 (38), 6282-6291 (2010).
  11. Nochi, T., et al. Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines. Nat Mater. 9 (8), 685-685 (2010).
  12. Henriksen-Lacey, M., et al. Liposomal cationic charge and antigen adsorption are important properties for the efficient deposition of antigen at the injection site and ability of the vaccine to induce a CMI response. J Control Release. 145 (2), 102-108 (2010).
  13. Zhong, X. F., et al. Nanovaccines mediated subcutis-to-intestine cascade for improved protection against intestinal infections. Small. 18 (1), e2105530 (2022).
  14. Mora, J. R., et al. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science. 314 (5802), 1157-1160 (2006).
  15. Iwata, M., et al. Retinoic acid imprints gut-homing specificity on T cells. Immunity. 21 (4), 527-538 (2004).
  16. Hammerschmidt, S. I., et al. Retinoic acid induces homing of protective T and B cells to the gut after subcutaneous immunization in mice. J Clin Invest. 121 (8), 3051-3061 (2011).
  17. Burger, C., Shahzad, Y., Brümmer, A., Gerber, M., du Plessis, J. Traversing the skin barrier with nano-emulsions. Curr Drug Deliv. 14 (4), 458-472 (2017).
  18. Lodaya, R. N., et al. Formulation design, optimization and evaluations of an α-tocopherol-containing self-emulsified adjuvant system using inactivated influenza vaccine. J Cont Release. 316, 12-21 (2019).
  19. Carmona-Ribeiro, A. M., Pérez-Betancourt, Y. Cationic nanostructures for vaccines design. Biomimetics. 5 (3), 32 (2020).
  20. Lam, K., et al. trialkyl ionizable lipids are versatile lipid-nanoparticle components for therapeutic and vaccine applications. Adv Mater. 35 (15), e2209624 (2023).
  21. Nie, T. Q., et al. Surface coating approach to overcome mucosal entrapment of DNA nanoparticles for oral gene delivery of glucagon-like peptide 1. Acs Appl Mater Inter. 11 (33), 29593-29603 (2019).
  22. Lou, G., et al. Delivery of self-amplifying mRNA vaccines by cationic lipid nanoparticles: The impact of cationic lipid selection. J Cont Release. 325, 370-379 (2020).

Play Video

Citer Cet Article
Li, G., Li, H., Jin, Z., Feng, R., Deng, Y., Cheng, H., Li, H. Cationic Nanoemulsion-Encapsulated Retinoic Acid as an Adjuvant to Promote OVA-Specific Systemic and Mucosal Responses. J. Vis. Exp. (204), e66270, doi:10.3791/66270 (2024).

View Video