Se presenta un protocolo para el cribado de fármacos de alto rendimiento para mejorar el sueño mediante el seguimiento del comportamiento del sueño de las moscas de la fruta en un modelo de Drosophila de edad avanzada.
El sueño, un componente esencial de la salud y el bienestar general, a menudo presenta desafíos para las personas mayores que experimentan con frecuencia trastornos del sueño caracterizados por una duración del sueño más corta y patrones fragmentados. Estas interrupciones del sueño también se correlacionan con un mayor riesgo de diversas enfermedades en las personas mayores, como diabetes, enfermedades cardiovasculares y trastornos psicológicos. Desafortunadamente, los medicamentos existentes para los trastornos del sueño se asocian con efectos secundarios significativos, como deterioro cognitivo y adicción. En consecuencia, se necesita urgentemente el desarrollo de nuevos medicamentos para los trastornos del sueño, más seguros y más eficaces. Sin embargo, el alto costo y la larga duración experimental de los métodos actuales de detección de drogas siguen siendo factores limitantes.
Este protocolo describe un método de cribado rentable y de alto rendimiento que utiliza Drosophila melanogaster, una especie con un mecanismo de regulación del sueño altamente conservado en comparación con los mamíferos, lo que lo convierte en un modelo ideal para estudiar los trastornos del sueño en los ancianos. Al administrar varios compuestos pequeños a moscas envejecidas, podemos evaluar sus efectos sobre los trastornos del sueño. Los comportamientos de sueño de estas moscas se registran mediante un dispositivo de monitorización infrarroja y se analizan con el paquete de datos de código abierto Sleep and Circadian Analysis MATLAB Program 2020 (SCAMP2020). Este protocolo ofrece un enfoque de detección de bajo costo, reproducible y eficiente para la regulación del sueño. Las moscas de la fruta, debido a su corto ciclo de vida, bajo costo de cría y facilidad de manejo, sirven como excelentes sujetos para este método. A modo de ilustración, la reserpina, uno de los fármacos probados, demostró la capacidad de promover la duración del sueño en moscas ancianas, destacando la eficacia de este protocolo.
El sueño, uno de los comportamientos esenciales necesarios para la supervivencia humana, se caracteriza por dos estados principales: el sueño de movimientos oculares rápidos (REM) yel sueño de movimientos oculares no rápidos (NREM). El sueño NREM comprende tres etapas: N1 (la transición entre la vigilia y el sueño), N2 (sueño ligero) y N3 (sueño profundo, sueño de ondas lentas), que representan la progresión de la vigilia al sueño profundo1. El sueño juega un papel crucial tanto en la salud física como en la mental2. Sin embargo, el envejecimiento reduce la duración total del sueño, la eficiencia del sueño, el porcentaje de sueño de ondas lentas y el porcentaje de sueño REM en adultos3. Las personas mayores tienden a pasar más tiempo en sueño ligero en comparación con el sueño de ondas lentas, lo que los hace más sensibles a los despertares nocturnos. A medida que aumenta el número de despertares, el tiempo medio de sueño disminuye, lo que da lugar a un patrón de sueño fragmentado en los ancianos, que puede estar asociado a una excitación excesiva de las neuronas Hcrt en ratones4. Además, las disminuciones relacionadas con la edad en los mecanismos circadianos contribuyen a un cambio más temprano en la duración del sueño 5,6. En combinación con las enfermedades físicas, el estrés psicológico, los factores ambientales y el uso de medicamentos, estos factores hacen que los adultos mayores sean más susceptibles a los trastornos del sueño, como el insomnio, el trastorno del comportamiento del sueño REM, la narcolepsia, los movimientos periódicos de las piernas, el síndrome de piernas inquietas y los trastornos respiratorios del sueño 7,8.
Los estudios epidemiológicos han demostrado que los trastornos del sueño están estrechamente relacionados con las enfermedades crónicas en los ancianos9, incluyendo la depresión 10, las enfermedades cardiovasculares11 y la demencia12. Abordar los trastornos del sueño desempeña un papel crucial en la mejora y el tratamiento de las enfermedades crónicas y en la mejora de la calidad de vida de los adultos mayores. En la actualidad, los pacientes recurren principalmente a fármacos como las benzodiacepinas, las no benzodiacepinas y los agonistas de los receptores de melatonina para mejorar la calidad del sueño13. Sin embargo, las benzodiacepinas pueden conducir a una regulación negativa de los receptores y a la dependencia después de un uso prolongado, causando síntomas graves de abstinencia tras la interrupción14,15. Los medicamentos no benzodiacepinas también conllevan riesgos, como demencia16, fracturas17 y cáncer18. El agonista del receptor de melatonina de uso común, el ramelteón, reduce la latencia del sueño, pero no aumenta la duración del sueño y tiene problemas relacionados con la función hepática debido a la extensa eliminación del primer paso19. La agomelatina, un agonista de los receptores de melatonina y antagonista de los receptores de serotonina, mejora el insomnio relacionado con la depresión, pero también presenta un riesgo de daño hepático20. En consecuencia, existe una necesidad urgente de medicamentos más seguros para tratar o aliviar los trastornos del sueño. Sin embargo, las estrategias actuales de cribado de fármacos, basadas en experimentos moleculares y celulares combinados con sistemas automatizados y análisis informáticos, son costosas y requieren mucho tiempo21. Las estrategias de diseño de fármacos basadas en la estructura, que se basan en la estructura y las propiedades de los receptores, requieren una comprensión clara de la estructura tridimensional de los receptores y carecen de capacidades predictivas de los efectos de los fármacos22.
En el año 2000, con base en los criterios de sueño propuestos por Campbell y Tobler en 1984 23, los investigadores establecieron modelos animales simples para estudiar el sueño 24, incluyendo Drosophila melanogaster, que exhibía estados similares al sueño25,26. A pesar de las diferencias anatómicas entre Drosophila y los humanos, muchos componentes neuroquímicos y vías de señalización que regulan el sueño en Drosophila se conservan en el sueño de los mamíferos, facilitando el estudio de las enfermedades neurológicas humanas27,28. Drosophila también se utiliza ampliamente en los estudios del ritmo circadiano, a pesar de las diferencias en los osciladores centrales entre moscas y mamíferos 29,30,31. Por lo tanto, Drosophila sirve como un valioso organismo modelo para estudiar el comportamiento del sueño y realizar pruebas de detección de drogas relacionadas con el sueño.
Este estudio propone un enfoque rentable y sencillo basado en el fenotipo para el cribado de fármacos de moléculas pequeñas para tratar los trastornos del sueño utilizando moscas envejecidas. La regulación del sueño en Drosophila está altamente conservada25, y la disminución del sueño observada con la edad puede ser reversible mediante la administración de fármacos. Por lo tanto, este método de detección basado en el fenotipo del sueño puede reflejar intuitivamente la eficacia del fármaco. Alimentamos a las moscas con una mezcla del fármaco investigado y la comida, monitorizamos y registramos el comportamiento del sueño utilizando el Drosophila Activity Monitor (DAM)32 y analizamos los datos adquiridos utilizando el paquete de datos SCAMP2020 de código abierto de MATLAB (Figura 1). El análisis estadístico se realiza mediante estadísticas y software de gráficos (ver Tabla de Materiales). A modo de ejemplo, demostramos la efectividad de este protocolo mediante la presentación de datos experimentales sobre la reserpina, un inhibidor de molécula pequeña del transportador vesicular de monoaminas que se ha reportado que aumenta el sueño33. Este protocolo proporciona un enfoque valioso para identificar medicamentos para tratar los problemas de sueño relacionados con la edad.
El método descrito es adecuado para la detección rápida de medicamentos para dormir pequeños y medianos. En la actualidad, la mayoría de los métodos convencionales de detección de fármacos de alto rendimiento se basan en los niveles bioquímicos y celulares. Por ejemplo, se examina la estructura y las propiedades del receptor para buscar ligandos específicos que puedan unirse a él22. Otro enfoque consiste en analizar el modo de unión y la fuerza de los fragmentos moleculares de fármaco…
The authors have nothing to disclose.
Agradecemos a los miembros del laboratorio del Prof. Junhai Han por su discusión y comentarios. Este trabajo fue apoyado por la Fundación Nacional de Ciencias Naturales de China 32170970 a Y.T y el “Proyecto Azul de Cianina” de la provincia de Jiangsu a Z.C.Z.
Ager | BIOFROXX | 8211KG001 | |
Artificial Climate Box | PRANDT | PRX-1000A | official website:https://www.nbplt17.com/PLTXBS-Products-20643427/ |
DAM2 Drosophila Activity Monitor | TriKineics | DAM2 | official website:https://www.trikinetics.com/ |
DAM2system | TriKineics | version:v3.03 | official website:https://www.trikinetics.com/ |
DAMFileScan | TriKineics | version:1.0.7.0 | official website:https://www.trikinetics.com/ |
Dimethyl Sulfoxide | SIGMA | 276855 | |
Drosophila Activity Monitoring Incubator | Tritech Research | DT2-CIRC-TK | official website:https://www.tritechresearch.com/DT2-CIRC-TK.html |
Drosophila Bottles | Biologix | 51-17720 | official website:http://biologixgroup.com/goods.php?id=48 |
Drosophila: w1118 | Bloomington Drosophila Stock Center | BDSC_3605 | |
Excel | Microsoft | version:Excel 2016 | official website:https://www.microsoftstore.com.cn/software/office/excel |
Glass tubes | TriKinetics | PPT5x65 | official website:https://www.trikinetics.com/ |
MATLABR2022b | MathWorks | version:9.13.0.2049777 | official website:https://ww2.mathworks.cn/products/matlab.html |
Prism | GraphPad | Version:Prism 8.0.1 | official website:https://www.graphpad.com/features |
Reserpine | MACKLIN | R817202-1g | |
Saccharose | SIGMA | 1245GR500 | |
SCAMP | Vecsey Lab | N/A | official website:https://academics.skidmore.edu/blogs/cvecsey/ |