Hier presenteren we een protocol voor een geautomatiseerd celkweeksysteem. Dit geautomatiseerde kweeksysteem vermindert arbeid en komt ten goede aan de gebruikers, waaronder onderzoekers die niet bekend zijn met het hanteren van geïnduceerde pluripotente stamcellen (iPS), van het onderhoud van iPS-cellen tot differentiatie in verschillende soorten cellen.
Van door de mens geïnduceerde pluripotente stamcellen (hiPSC’s) met een oneindig zelfprolifererend vermogen wordt verwacht dat ze toepassingen hebben op tal van gebieden, waaronder de opheldering van zeldzame ziektepathologieën, de ontwikkeling van nieuwe geneesmiddelen en regeneratieve geneeskunde die gericht is op het herstellen van beschadigde organen. Desondanks is de maatschappelijke implementatie van hiPSC’s nog steeds beperkt. Dit is deels te wijten aan de moeilijkheid om differentiatie in cultuur te reproduceren, zelfs met geavanceerde kennis en geavanceerde technische vaardigheden, vanwege de hoge gevoeligheid van iPSC’s voor minieme veranderingen in de omgeving. De toepassing van een geautomatiseerd kweeksysteem kan dit probleem oplossen. Experimenten met een hoge reproduceerbaarheid, onafhankelijk van de vaardigheden van een onderzoeker, kunnen worden verwacht volgens een gedeelde procedure tussen verschillende instituten. Hoewel er eerder verschillende geautomatiseerde kweeksystemen zijn ontwikkeld die iPSC-culturen kunnen handhaven en differentiatie kunnen induceren, zijn deze systemen zwaar, groot en kostbaar omdat ze gebruik maken van gehumaniseerde, meervoudig gearticuleerde robotarmen. Om de bovenstaande problemen te verbeteren, hebben we een nieuw systeem ontwikkeld met behulp van een eenvoudig x-y-z as schuifrailsysteem, waardoor het compacter, lichter en goedkoper kan zijn. Bovendien kan de gebruiker in het nieuwe systeem eenvoudig parameters wijzigen om nieuwe afhandelingstaken te ontwikkelen. Zodra een taak is vastgesteld, hoeft de gebruiker alleen nog maar de iPSC voor te bereiden, de reagentia en verbruiksartikelen die nodig zijn voor de gewenste taak van tevoren te leveren, het taaknummer te selecteren en de tijd op te geven. We bevestigden dat het systeem iPSC’s in een ongedifferentieerde toestand kon houden door verschillende passages zonder voedingscellen en differentiëren in verschillende celtypen, waaronder cardiomyocyten, hepatocyten, neurale voorlopercellen en keratinocyten. Het systeem zal zeer reproduceerbare experimenten tussen instellingen mogelijk maken zonder dat er geschoolde onderzoekers nodig zijn, en zal de sociale implementatie van hiPSC’s in een breder scala van onderzoeksgebieden vergemakkelijken door de belemmeringen voor nieuwe inzendingen te verminderen.
Dit artikel heeft tot doel actuele en gedetailleerde behandelingsprocedures te bieden voor een geautomatiseerd kweeksysteem voor door mensen geïnduceerde pluripotente stamcellen (iPSC), dat we hebben geproduceerd in samenwerking met een bedrijf, en om representatieve resultaten te laten zien.
Sinds de publicatie van het artikel in 2007 trekt iPSC wereldwijd de aandacht1. Vanwege de grootste eigenschap dat het in staat is om te differentiëren in elk type somatische cel, wordt verwacht dat het zal worden toegepast op verschillende gebieden, zoals regeneratieve geneeskunde, het ophelderen van de oorzaken van hardnekkige ziekten en het ontwikkelen van nieuwe therapeutische geneesmiddelen 2,3. Bovendien zou het gebruik van menselijke iPSC-afgeleide somatische cellen dierproeven kunnen verminderen, die onderworpen zijn aan aanzienlijke ethische beperkingen. Hoewel er voortdurend tal van homogene iPSC’s nodig zijn om nieuwe methoden met iPSC’s te onderzoeken, is het te omslachtig om ze te beheren. Bovendien is het hanteren van iPSC moeilijk vanwege de hoge gevoeligheid, zelfs voor subtiele culturele en omgevingsveranderingen.
Om dit probleem op te lossen, wordt van geautomatiseerde kweeksystemen verwacht dat ze taken uitvoeren in plaats van mensen. Sommige groepen hebben een paar geautomatiseerde menselijke pluripotente stamcelkweeksystemen ontwikkeld voor celonderhoud en -differentiatie en hun prestaties gepubliceerd 4,5,6. Deze systemen zijn uitgerust met multi-gelede robotarm(en). Robotarmen hebben niet alleen de verdienste dat ze menselijke armbewegingen sterk nabootsen, maar ook omdat ze hogere kosten voor de arm(en), grotere en zwaardere systeemverpakkingen en tijdrovende onderwijsinspanningen van de ingenieurs vereisen om de beoogde bewegingente verkrijgen 7,8. Om het gemakkelijker te maken om het apparaat te introduceren in meer onderzoeksfaciliteiten op de punten van economisch, ruimte- en personeelsverbruik, hebben we een nieuw geautomatiseerd kweeksysteem ontwikkeld voor het onderhoud en de differentiatie van iPSC in verschillende celtypen9.
Onze reden voor het nieuwe systeem was om een X-Y-Z-asrailsysteem te gebruiken in plaats van meervoudig gelede robotarmen9. Om de complexe handachtige functies van robotarmen te vervangen, hebben we een nieuw idee toegepast op dit systeem, dat automatisch drie soorten specifieke functionele armuiteinden kan veranderen. Hier geven we ook aan hoe gebruikers gemakkelijk taakschema’s kunnen maken met eenvoudige bestellingen op software vanwege het ontbreken van vereisten voor de bijdragen van ingenieurs gedurende het hele proces.
Een van de robotkweeksystemen heeft het maken van embryoïde lichamen gedemonstreerd met behulp van platen met 96 putjes als 3D-celaggregaten voor differentiatie4. Het hier gerapporteerde systeem kan geen platen met 96 putjes verwerken. Men bereikte de huidige good manufacturing practice (cGMP)-graad met behulp van een cellijn, hoewel het geen menselijke pluripotente stamcel was5. Het hier beschreven geautomatiseerde kweeksysteem is nu ontwikkeld met het specifieke doel om laboratoriumexperimenten te ondersteunen (figuur 1). Het heeft echter voldoende systemen om een schoon niveau te behouden dat gelijk is aan een veiligheidskast van niveau IV.
Een cruciale stap in het protocol is dat als een gebruiker fouten vindt, u op elk gewenst moment op de knop annuleren, stoppen of resetten klikt en opnieuw begint vanaf de eerste stap. De software kan menselijke fouten voorkomen, waaronder dubbele boekingen, het openen van deuren terwijl de systeemtaken actief zijn en een gebrek aan aanvulling. Een ander cruciaal punt voor succesvolle en efficiënte differentiatie naar de gewenste somatische cel is de juiste selectie van pluripotente stamcellijnen, omdat elke pluripotent…
The authors have nothing to disclose.
Deze studie werd ondersteund door een subsidie van het New Business Promotion Center, Panasonic Production Engineering Co., Ltd., Osaka, Japan.
0.15% bovine serum albumin fraction V | Fuji Film Wako Chemical Inc., Miyazaki, Japan | 9048-46-8 | |
1% GlutaMAX | Thermo Fisher Scientific | 35050061 | |
10 cm plastic plates | Corning Inc., NY, United States | 430167 | |
253G1 | RKEN Bioresource Research Center | HPS0002 | |
2-mercaptoethanol | Thermo Fisher Scientific | 21985023 | |
Actinin mouse | Abcam | ab9465 | |
Activin A | Nacali Tesque | 18585-81 | |
Adenine | Thermo Fisher Scientific | A14906.30 | |
Albumin rabbit | Dako | A0001 | |
All-trans retinoic acid | Fuji Film Wako Chemical Inc. | 186-01114 | |
Automated culture system | Panasonic | ||
B-27 supplement | Thermo Fisher Scientific | 17504044 | |
bFGF | Fuji Film Wako Chemical Inc. | 062-06661 | |
BMP4 | Thermo Fisher Scientific | PHC9531 | |
Bovine serum albumin | Merck | 810037 | |
CHIR-99021 | MCE, NJ, United States #HY-10182 | 252917-06-9 | |
Defined Keratinocyte-SFM | Thermo Fisher Scientific | 10744019 | Human keratinocyte medium |
Dexamethasone | Merck | 266785 | |
Dihexa | TRC, Ontario, Canada | 13071-60-8 | rac-1,2-Dihexadecylglycerol |
Disposable hemocytometer | CountessTM Cell Counting Chamber Slides, Thermo Fisher Scientific | C10228 | |
Dorsomorphin | Thermo Fisher Scientific | 1219168-18-9 | |
Dulbecco’s modified Eagle medium/F12 | Fuji Film Wako Chemical Inc. | 12634010 | |
EGF | Fuji Film Wako Chemical Inc. | 053-07751 | |
Essential 8 | Thermo Fisher Scientific | A1517001 | Human pluripotent stem cell medium |
Fetal bovine serum | Biowest, FL, United States | S140T | |
FGF-basic | Nacalai Tesque Inc. | 19155-07 | |
Forskolin | Thermo Fisher Scientific | J63292.MF | |
Glutamine | Thermo Fisher Scientific | 25030081 | Glutamine supplement |
Goat IgG(H+L) AlexaFluo546 | Thermo Scientific | A11056 | |
HNF-4A goat | Santacruz | 6556 | |
Hydrocortisone | Thermo Fisher Scientific | A16292.06 | |
Hydrocortisone 21-hemisuccinate | Merck | H2882 | |
iMatrix511 Silk | Nippi Inc., Tokyo, Japan | 892 021 | Cell culture matrix |
Insulin-transferrin-selenium | Thermo Fisher Scientific | 41400045 | |
Keratin 1 mouse | Santacruz | 376224 | |
Keratin 10 rabbit | BioLegend | 19054 | |
KMUR001 | Kansai Medical University | Patient-derived iPSCs | |
Knockout serum replacement | Thermo Fisher Scientific | 10828010 | |
L-ascorbic acid 2-phosphate | A8960, Merck | A8960 | |
Leibovitz’s L-15 medium | Fuji Film Wako Chemical Inc. | 128-06075 | |
Matrigel | Corning Inc. | 354277 | |
Mouse IgG(H+L) AlexaFluo488 | Thermo Scientific | A21202 | |
N-2 supplement | Thermo Fisher Scientific | 17502048 | |
Nestin mouse | Santacruz | 23927 | |
Neurobasal medium | Thermo Fisher Scientific | 21103049 | |
Neurofilament rabbit | Chemicon | AB1987 | |
Neutristem | Sartrius AG, Göttingen, Germany | 05-100-1A | cell culture medium |
Oct 3/4 mouse | BD | 611202 | |
PBS(-) | Nacalai Tesque Inc., Kyoto, Japan | 14249-24 | |
Rabbit IgG(H+L) AlexaFluo488 | Thermo Scientific | A21206 | |
Rabbit IgG(H+L) AlexaFluo546 | Thermo Scientific | A10040 | |
Recombinant human albumin | A0237, Merck, Darmstadt, Germany | A9731 | |
Rho kinase inhibitor, Y-27632 | Sellec Inc., Tokyo, Japan | 129830-38-2 | |
RIKEN 2F | RKEN Bioresource Research Center | HPS0014 | undifferentiated hiPSCs |
RPMI 1640 | Thermo Fisher Scientific #11875 | 12633020 | |
SB431542 | Thermo Fisher Scientific | 301836-41-9 | |
Sodium L-ascorbate | Merck | A4034-100G | |
SSEA-4 mouse | Millipore | MAB4304 | |
StemFit AK02N | Ajinomoto, Tokyo, Japan | AK02 | cell culture medium |
TnT rabbit | Abcam | ab92546 | |
TRA 1-81 mouse | Millipore | MAB4381 | |
Triiodothyronine | Thermo Fisher Scientific | H34068.06 | |
TripLETM express enzyme | Thermo Fisher Scientific, Waltham, MA, United States | 12604013 | |
Trypan blue solution | Nacalai Tesque, Kyoto, Japan | 20577-34 | |
Tryptose phosphate broth | Merck | T8782-500G | |
Wnt-C59 | Bio-techne, NB, United Kingdom | 5148 | |
β Tublin mouse | Promega | G712A |