Summary

骨髄由来マクロファージ由来の微小細胞外小胞ペプチドの同定

Published: June 30, 2023
doi:

Summary

このプロトコルは、示差超遠心によってマクロファージから小さな細胞外小胞を単離し、質量分析による同定のためにペプチドームを抽出する手順を説明しています。

Abstract

小さな細胞外小胞(sEV)は、通常、多胞小体(MVB)のエキソサイトーシスによって分泌されます。直径<200nmのこれらのナノベシクルは、さまざまな体液中に存在する。これらのsEVは、タンパク質、DNA、RNA、代謝物などの貨物を介して、遺伝子の転写と翻訳、細胞の増殖と生存、免疫と炎症などのさまざまな生物学的プロセスを調節します。現在、sEVの絶縁のためにさまざまな技術が開発されています。その中で、超遠心分離ベースの方法はゴールドスタンダードと見なされており、sEVの分離に広く使用されています。ペプチドは、長さが50アミノ酸未満の天然の生体高分子です。これらのペプチドは、ホルモン、神経伝達物質、細胞成長因子などの生物学的活性を有する様々な生物学的プロセスに関与している。ペプチドドームは、液体クロマトグラフィー-タンデム質量分析(LC-MS/MS)によって特定の生物学的サンプル中の内因性ペプチドを体系的に分析することを目的としています。ここでは、示差超遠心法によってsEVを単離するプロトコルを導入し、LC-MS/MSによる同定のためにペプチドドームを抽出しました。この方法により、骨髄由来マクロファージから数百のsEV由来ペプチドが同定されました。

Introduction

直径200nm未満の小さな細胞外小胞(sEV)は、ほぼすべての種類の体液に存在し、尿、汗、涙、脳脊髄液、羊水など、あらゆる種類の細胞から分泌されます1。当初、sEVは細胞廃棄物を処分するための容器と見なされていたため、その後の10年間で最小限の研究につながりました2。最近、sEVに特定のタンパク質、脂質、核酸、およびその他の代謝物が含まれていることを示す証拠が増えています。これらの分子は標的細胞3に輸送され、細胞間コミュニケーションに寄与し、それを介して組織修復、血管新生、免疫4および炎症5,6、腫瘍の発生および転移7,8,9などの様々な生物学的プロセスに関与する。

sEVの研究を容易にするには、複雑なサンプルからsEVを分離することが不可欠です。sEVの密度、粒子サイズ、表面マーカータンパク質など、sEVの物理的および化学的特性に基づいて、さまざまなsEV分離方法が開発されています。これらの技術には、超遠心ベースの方法、粒子サイズベースの方法、イムノアフィニティー捕捉ベースの方法、sEV沈殿ベースの方法、およびマイクロフルイディクスベースの方法が含まれる101112。これらの技術の中で、超遠心分離ベースの方法は、sEV分離のゴールドスタンダードとして広く認識されており、最も一般的に使用されている技術です13

ますます多くの証拠が、様々な生物のペプチド中に未発見の生物学的に活性なペプチドが多数存在することを示唆している。これらのペプチドは、成長、発達、ストレス応答14、15およびシグナル伝達16を調節することにより、多数の生理学的プロセスに大きく貢献します。sEVのペプチドドームの目的は、これらのsEVが担うペプチドを明らかにし、その生物学的機能の手がかりを提供することです。ここでは、示差超遠心によってsEVを単離し、続いてこれらのsEVからペプチドを抽出してペプチドドームをさらに分析するプロトコルを紹介します。

Protocol

1. 小細胞外小胞の単離 注意: 1.1°Cでステップ1.1-1.11のすべての遠心分離を実行します。 sEVフリーウシ胎児血清(FBS)の調製:FBSを超遠心分離機(材料表を参照)を介して4°Cで110,000 × gで一晩遠心分離し、内因性sEVを除去します。上清を回収し、0.2 μm限外ろ過膜でろ過滅菌し、-20°Cで保存します。 150 mm培養皿に約3 x 107 不死…

Representative Results

示差超遠心法で単離したsEVについて(図1)、国際細胞外小胞学会(ISEV)17に従って形態、粒度分布、タンパク質マーカーを評価しました。 まず、sEVの形態をTEMで観察したところ、典型的なカップ状の構造が示されました(図2A)。NTAは、単離されたsEVが主に136 nmに集中していることを示し(図2B)?…

Discussion

sEVの機能を調べる際には、潜在的な汚染を避けるために、複雑な生物学的サンプルから高純度のsEVを得ることが不可欠です。sEVの分離にはさまざまな方法が開発されており13、これらの方法の中で、示差超遠心ベースの方法は比較的高い純度のsEVを示しています。本研究では、200 mLの細胞上清を6時間回収し、示差超遠心により約200〜300 μgのsEVが得られた。ただし、超遠心分…

Divulgations

The authors have nothing to disclose.

Acknowledgements

この研究は、中国自然科学基金会(3157270)からの助成金によって支援されました。iBMDMを提供してくださったFeng Shao博士(中国国立生物科学研究所)に感謝します。

Materials

BCA Protein Assay Kit Beyotime Technology P0012
CD9 Beyotime Technology AF1192
Centrifugal filter tube Millipore UFC5010BK
Centrifuge bottles polypropylene Beckman Coulter 357003 High-speed centrifuge
Chemiluminescent substrate Thermo Fisher Scientific 34580
Dithiothreitol Solarbio D8220 100 g
DMEM culture medium Cell World N?A
GRP94 Cell Signaling Technology 20292
High-speed centrifuge Beckman Coulter Avanti JXN-26 Centrifuge rotor (JA-25.50)
Immortalized bone marrow-derived macrophages (iBMDM) National Institute of Biological Sciences, China Provided by Dr. Feng Shao (National Institute of Biological Sciences, China)
Iodoacetamide Sigma l1149 5 g
Microfuge tube polypropylene Beckman Coulter 357448 1.5 mL, Tabletop ultracentrifuge 
nano-high-performance LC system Thermo Fisher Scientific EASY-nLC 1000
Nanoparticle tracking analysis  Malvern Panalytical NanoSight LM10 NanoSight NTA3.4
Orbitrap Q Exactive HF-X mass spectrometer Thermo Fisher Scientific N/A
Phosphate-buffered saline Solarbio P1020
Polyallomer centrifuge tubes Beckman Coulter 326823 Ultracentrifuge
Protease inhibitor Bimake B14002
SpeedVac vacuum concentrator Eppendorf Concentrator plus
Tabletop ultracentrifuge Beckman Coulter Optima MAX-XP Ultracentrifuge rotor (TLA 55)
Transmission electron microscope HITACHI H-7650B
TSG101 Sigma AF8258
Ultracentrifuge Beckman Coulter Optima XPN-100 Ultracentrifuge rotor (SW32 Ti)
Ultrasonic cell disruptor Scientz SCIENTZ-IID
Western Blot imager Bio-Rad ChemiDocXRs Image lab 4.0 (beta 7)
β-actin Sigma A3853

References

  1. Kalluri, R., LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science. 367 (6478), (2020).
  2. Thery, C. Exosomes: secreted vesicles and intercellular communications. F1000 Biology Reports. 3, 15 (2011).
  3. Mathieu, M., Martin-Jaular, L., Lavieu, G., Thery, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nature Cell Biology. 21 (1), 9-17 (2019).
  4. Chen, G., et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature. 560 (7718), 382-386 (2018).
  5. Ti, D., et al. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. Journal of Translational Medicine. 13, 308 (2015).
  6. Sun, H., et al. Exosomal S100A4 derived from highly metastatic hepatocellular carcinoma cells promotes metastasis by activating STAT3. Signal Transduction and Targeted Therapy. 6 (1), 187 (2021).
  7. Xun, J., et al. Cancer-derived exosomal miR-138-5p modulates polarization of tumor-associated macrophages through inhibition of KDM6B. Theranostics. 11 (14), 6847-6859 (2021).
  8. Tai, Y. L., Chen, K. C., Hsieh, J. T., Shen, T. L. Exosomes in cancer development and clinical applications. Cancer Science. 109 (8), 2364-2374 (2018).
  9. Mashouri, L., et al. Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Molecular Cancer. 18 (1), 75 (2019).
  10. Yang, D., et al. Progress, opportunity, and perspective on exosome isolation – efforts for efficient exosome-based theranostics. Theranostics. 10 (8), 3684-3707 (2020).
  11. Zhang, Y., et al. Exosome: A review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. International Journal of Nanomedicine. 15, 6917-6934 (2020).
  12. Xu, R., Greening, D. W., Zhu, H. J., Takahashi, N., Simpson, R. J. Extracellular vesicle isolation and characterization: toward clinical application. The Journal of Clinical Investigation. 126 (4), 1152-1162 (2016).
  13. Li, P., Kaslan, M., Lee, S. H., Yao, J., Gao, Z. Progress in exosome isolation techniques. Theranostics. 7 (3), 789-804 (2017).
  14. Palanski, B. A., et al. An efficient urine peptidomics workflow identifies chemically defined dietary gluten peptides from patients with celiac disease. Nature Communications. 13, 888 (2022).
  15. Kalaora, S., et al. Identification of bacteria-derived HLA-bound peptides in melanoma. Nature. 592 (7852), 138-143 (2021).
  16. Hamley, I. W. Small bioactive peptides for biomaterials design and therapeutics. Chemical Reviews. 117 (24), 14015-14041 (2017).
  17. Lotvall, J., et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. Journal of Extracellular Vesicles. 3, 26913 (2014).
  18. Thery, C., et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles. 7 (1), 1535750 (2018).
  19. Kim, Y. G., Lone, A. M., Saghatelian, A. Analysis of the proteolysis of bioactive peptides using a peptidomics approach. Nature Protocols. 8 (9), 1730-1742 (2013).
  20. Lyapina, I., Ivanov, V., Fesenko, I. Peptidome: Chaos or inevitability. International Journal of Molecular Sciences. 22 (23), 13128 (2021).
  21. Keller, M. D., et al. Decoy exosomes provide protection against bacterial toxins. Nature. 579 (7798), 260-264 (2020).
  22. Koeppen, K., et al. Let-7b-5p in vesicles secreted by human airway cells reduces biofilm formation and increases antibiotic sensitivity of P. aeruginosa. Proceedings of the National Academy of Sciences of the United States of America. 118 (28), e2105370118 (2021).

Play Video

Citer Cet Article
Cheng, J., Zhu, J., Liu, Y., Yang, C., Zhang, Y., Liu, Y., Jin, C., Wang, J. Identification of Peptides of Small Extracellular Vesicles from Bone Marrow-Derived Macrophages. J. Vis. Exp. (196), e65521, doi:10.3791/65521 (2023).

View Video