トウモロコシの葉の原基は深く覆われて転がされているため、研究が困難です。ここでは、蛍光および共焦点イメージングのために、トウモロコシの葉の原基の横断切片と展開されたマウント全体を準備するための方法を紹介します。
トウモロコシ(Zea mays)や他のイネ科(イネ科)では、葉の原基が葉の渦巻きの中に深く覆われて転がっているため、初期の葉の発達を研究することは困難です。ここでは、蛍光および共焦点イメージングのためにトウモロコシの葉原基の横断切片および展開されたマウント全体を調製するための方法について説明します。最初の方法は、ワイヤーストリッパーを使用して古い葉の上部を取り除き、葉の原基の先端を露出させ、より正確な横断面サンプリングのための測定を可能にします。2番目の方法は、透明な両面ナノテープを使用して、イメージング用の全葉原基を広げて取り付けます。トウモロコシの蛍光タンパク質レポーターの可視化と分析における2つの方法の有用性を示します。これらの方法は、トウモロコシの葉の原基の特徴的な形態によって提示される課題に対する解決策を提供し、トウモロコシおよび他のイネ科植物の葉の解剖学的および発生的形質を視覚化および定量化するのに役立ちます。
草作物は世界人口の食料とバイオ燃料の主要な供給源であり1、葉の解剖学的構造を改善することは生産性を向上させる可能性があります2,3。しかし、イネ科植物の葉の解剖学的構造がどのように調節されているかについての現在の理解は限られており4、葉の解剖学的および生理学的特性の多くは発生の初期に事前に決定されているため、葉の原基の分析が必要です5,6,7。蛍光や共焦点イメージングなどの細胞イメージング技術は、草の葉の解剖学や細胞形質を研究するために不可欠ですが、これらの技術は葉の渦巻きの中で深く覆われて転がっているため、草の葉原基に適用することは困難です。私たちは、草の葉の解剖学と発達を研究するためのモデルシステムであるトウモロコシの葉原基の蛍光および共焦点分析のために、横断切片と展開された全葉マウントを準備する方法を開発することによってこの問題に対処しました2,8。
トウモロコシの葉は、すべての草の葉と同様に、茎を包み込み、芽9,10,11,12,13を発達させる鞘を備えたストラップのような刃で構成されています。葉は苗条頂分裂組織(SAM)から異形パターンで発達し、新しい葉はそれぞれ前の葉の反対の位置から始まり、垂直軸に沿って2つのランクの葉が得られます(図1A)14。各葉原基の発達段階はSAMに対する相対的な位置によって識別され、最も近い原基はプラストクロン1(P1)と呼ばれ、次の原基はP2、P3などと呼ばれます(図1B、C)2。発達中(図1D)、葉の原基は最初にSAMの基部の周りに三日月形のバットレスとして現れ(P1)、次に分裂組織(P2)9,10,11に広がるフード型の原基に成長します。フードの基底縁は横方向に拡大し、先端が上向きに成長するにつれて互いに重なり合い、円錐形の原基(P3-P5)10を形成します。その後、原基の長さは急速に成長し、葉の軸方向側にフリンジ状の突起である結紮が形成されると、基部の鞘と刃の境界がより顕著になります(P6 / P7)。最後に、葉は定常状態の成長中に渦巻きから出てくるときに展開し、分裂細胞はブレードの小さな基底領域内で制限され、近位遠位軸に沿って細胞が拡大および分化する勾配を形成します(P7/P8)15。トウモロコシ苗の苗条の頂点には、発育のさまざまな段階で複数の原基が含まれているため、葉の発達を研究するための優れたモデルとなっています8。
初期の葉の発達を正確に分析するには、他の成長または形態学的パラメータに関連して原基発達の明確な段階を定義するための病期分類または標準化された基準の使用が必要です。葉の原基は草の芽の中に隠れているため、研究者は通常、植物の年齢や出現する葉のサイズなどのパラメーターを、葉の原基の段階とサイズの予測因子として使用します9,16。トウモロコシでは、植物の年代順の年齢は、植え付けまたは発芽後の日数のいずれかによって決定されます(DAP / DAG)17,18。栄養段階(V期)は、目に見える襟、結紮と耳介の位置に対応するブレードと鞘の間の軸側の淡い線、ブレードの基部にある一対のくさび形の領域(図1A、B)17,19。20〜25 DAGの間で、SAMは花序分裂組織に移行し、新しい葉の生成を停止します20。トウモロコシの葉の原基の成長速度は、環境や植物の遺伝子型によって異なります。このため、植物の年齢と出現する葉のサイズは、葉の原基のサイズを正確に予測することはできません。ただし、これらのパラメーターを使用すると、実験目的で原基のステージとサイズの範囲を予測するのに役立ちます。
横断面分析は、シュート全体の単一のセクションで複数のプラストクロンのサンプリングを可能にするため、トウモロコシおよび他の草の葉の解剖学的構造および発達を調べるための一般的な方法である21,22,23。この方法は、周囲の葉が切断および取り付け中に葉の原基を所定の位置に保つ足場として機能するため、新鮮なサンプルの細胞イメージングにも便利です24。ただし、この方法の欠点は、無傷のシュートから切断するときに、原基内のターゲットプラストクロンと領域を正確に特定することが困難な場合があることです。さらに、葉の成長はプラストクロン間および近位遠位軸2,5に沿って異なるため、不正確なサンプリングは、特定のセクションの原基の発達段階と領域の誤った解釈をもたらす可能性があります。したがって、正確な横断面サンプリングの方法を開発することは、イネ科植物の解剖学的および発生的分析の精度と再現性を確保するために重要です。
全葉マウント分析により、増殖増殖25や静脈パターニング26、27、28など、臓器全体で発生する組織および細胞プロセスの包括的かつ統合的な調査が可能になります。この方法は、葉の傍皮の概要を提供し、横断面分析を使用して検出することが他の方法では困難であろう明確なプロセスおよびパターンの発見を可能にする24、27。シロイヌナズナとは異なり、すでに全葉マウントをイメージングする方法が確立されています29,30、現在、草の展開された全葉マウントをイメージングするための標準的な方法はありません。単離されたトウモロコシの葉の原基を展開するための以前のプロトコルは、珍しい材料を含み、細胞イメージングには適していませんでした31。コンピュータ断層撮影(CT)や磁気共鳴画像法(MRI)などの高度な画像技術は、原基11,32,33を分離して展開することなく3D解剖学的情報を取得できますが、高価であり、特殊な機器が必要です。トウモロコシや他のイネ科植物の葉原基の丸く円錐形の形態によって課せられる制約を克服する技術を開発することは、それらの解剖学的および発達的形質の調査を進めるでしょう。
ここでは、蛍光および共焦点イメージングのために、トウモロコシの葉の原基の横断切片と展開されたマウント全体を準備するための方法を紹介します。これらの方法を用いて、トウモロコシの葉原基における静脈数を定量化し、蛍光タンパク質(FP)24による時空間的ホルモン分布をマッピングしました。最初の方法は、ワイヤーストリッパーでトウモロコシの苗から古い葉の上部を取り除くことです(図1E)。原基(P5-P7)の先端を露出させることで、周囲の古い葉を完全に取り除くことなく長さを決定することが可能になり、簡単で正確な切片作成が可能になります。2番目の方法は、透明な両面ナノテープで全葉原基(P3-P7)を展開および取り付けることです(図1F)。これらの方法は、様々なFPs24を可視化するのに適しているが、蛍光色素および透明化試薬を使用するための最適化が必要である。さらに、ImageJ/FIJI34 の Z スタックの平坦化、画像のステッチング、およびチャネルのマージに関するいくつかの手順について概説します。これらの方法は、トウモロコシの葉の日常的な蛍光または共焦点イメージングに役立ちますが、イネ、セタリア、ブラキポディウムなどの他のモデルイネ科植物にも適用できます。
図1:トウモロコシ葉原基の構成と形態、および方法の概要 。 (A)トウモロコシ苗の模式図。トウモロコシには葉状突起があり、新しい葉は前の葉の反対側の位置から始まります。葉番号は、葉が発芽から出てきた年代順を示します(すなわち、最初の葉、L1、2番目の葉、L2、3番目の葉、L3など)。各葉は遠位刃と、結紮と耳介に対応する襟で描かれた基底鞘を持っています。襟が見える一番上の葉は栄養段階を示します。この例の苗はV2ステージにあり、L2カラー(矢じり)が見えます。はさみアイコンは、収集するために苗を切る必要がある中胚軸(me)の場所を示します。(B)単離されたL1〜L4を示す解剖シュートの模式図、(C)に拡大画像として示した葉原基L5〜L9。プラストクロン数は、SAMに対する原基の位置を示し、最も若い葉の原基(P1)がSAMに最も近く、古い葉の原基(P2、P3、P4など)が連続して遠くなります2。(D)P1からP5までのトウモロコシ葉原基の形態の模式図。(E)トウモロコシ葉原基の横断面解析方法の概略概要。(1)ワイヤーストリッパーで古い葉を切り取ります。(2)原基を測定し、シュートを切片化します。(3)イメージングと処理のためにスライドにセクションを取り付けます(4、5)。(F)トウモロコシ葉原基のホールマウント分析方法の概略概要。(1)周囲の葉を取り除き、原基を抽出します。(2)原基をナノテープ上で平らに切断して広げます。(3)イメージングおよび処理用のサンプルをマウントします(4、5)。略語:L =葉;bl =ブレード;sh =シース;co =襟;私=中胚軸;V =栄養;P =プラストクロン;SAM =頂端分裂組織を撃ちます。 この図の拡大版を表示するには、ここをクリックしてください。
細胞イメージング用のトウモロコシ葉原基を調製するための2つの方法を提示する。第1の方法(プロトコルセクション2)は、横断面分析のための原基の測定を可能にし、第2の方法(プロトコルセクション3)は、全マウント分析のための原基の展開および平坦化を可能にする。これらの方法は、トウモロコシの葉の原基24におけるFPの細胞イメージングを容易にし(図4および図5に示すように)、トウモロコシの葉のイメージングの課題に対する簡単な解決策を提供します。プロトコルセクション2は、ステージングパラメータ9、16のみに依存するのではなく、セクショニング前に原基を測定することにより、解剖時間を短縮し、サンプリング精度を向上させます。市販のナノテープを用いて、プロトコルセクション3は、トウモロコシの全葉原基のイメージングの長年の問題を解決する。このプロトコルは、透析チューブ31を使用した以前の方法を改善し、CTおよびMRI11、32、33よりもはるかに安価な代替手段です。ただし、葉の解剖学的特徴を視覚化し、最適な結果を生成することになると、両方のプロトコルにいくつかの制限があり、表2に概説し、以下で詳しく説明します。
プロトコルセクション2では、葉原基の厚い横断切片の細胞輪郭を視覚化することが困難であり、細胞壁または原形質膜結合蛍光色素による対比染色は満足のいく結果を提供しませんでした。例えば、FM 4-64は、原形質膜FPマーカーであるp Zm PIP2-1::ZmPIP2-1:CFP39(PIP2-1-CFP;図3A-D)。この制限を克服するために、ビブラトームを使用してより薄い組織切片(~0.1 mm)58を作成し、細胞の輪郭の鮮明な明視野イメージングを可能にしたり、対比染色プロトコルを最適化したりすることをお勧めします47,59。
プロトコルセクション3の主な制限は、プロトコルステップ3.2.5〜3.2.6(図3E-K)で詳しく説明されているように、引き裂き、損傷、または気泡なしでリーフを取り付けるのが難しいことです。トウモロコシの葉は左右対称であるため、視覚化9には、葉全体のマウントではなく、ハーフリーフマウントで十分な場合があります。これを行うには、原基を中央肋骨まで広げた後、縦軸に沿ってかみそりの刃で切断し、葉の半分だけを取り付けることができます。プロトコルセクション3の別の制限は、葉の厚さがディープイメージング中の蛍光色素シグナルの光学分解能を制限し得ることである。この問題に対処するために、組織透明化技術60を採用することができる。しかし、植物組織のイメージングに一般的に使用されている透明化試薬であるClearSee61は、サンプルとカバーガラスがナノテープから剥離するため、プロトコルに適合しないことがわかりました。この問題に対する潜在的な解決策は、葉試料の上に半透膜31を適用し、ナノテープによって所定の位置に保持されたまま透明溶液で処理することを可能にすることである。展開した葉に液体溶液を適用することを可能にするこのような方法は、以前はトウモロコシの花序の発達には最適化されていたが、全葉原基には最適化されていない全マウントRNAin situハイブリダイゼーションおよび免疫局在技術にも使用できる62,63。
実生段階でも大きな葉の原基を持つトウモロコシのプロトコルについて説明しました。イネ、オオムギ、コムギ、セタリア、ブラキポディウム16,23,64,65,66など、葉の原基がはるかに小さい他の草種では、これらのプロトコルを効果的に適用するために追加の精密ツールの使用が必要になる場合があります。さらに、これらのプロトコルは、組織形成と細胞応答のリアルタイムの動的プロセスをキャプチャする生細胞イメージングを目的としていませんでした。しかし、植物の生細胞イメージングにおいて蛍光プローブ、イメージング技術、およびコンピューティング能力が進歩し続けるにつれて67、将来の研究はこれらのプロトコルに基づいて、草の葉原基のユニークな特徴に合わせたライブセルイメージング戦略を開発する可能性があります。
The authors have nothing to disclose.
著者らは、トウモロコシ遺伝学協力、トウモロコシ細胞ゲノミクスプロジェクト、デイブジャクソン(ニューヨーク州コールドスプリングハーバー研究所)、アンW.シルベスター(イリノイ州シカゴ大学海洋生物学研究所)、アンドレアガラボッティ(ニュージャージー州ラトガース大学)、キャロリンG.ラスムッセン(カリフォルニア大学リバーサイド校)、および変異株とトランスジェニック株を提供してくれたこと、および大学の高度な光学顕微鏡コアのロバートF.ベイカーとアレクサンダーユルケビッチに感謝しますミズーリ州-コロンビア州は、共焦点顕微鏡検査の支援をしてくれました。JMRは、J.ウィリアムフルブライトフェローシップ、ダイアンP.およびロバートE.シャープ基金、および国立科学財団の植物ゲノム研究プログラム(IOS-1546873)からPMへの支援を受けました。CDTC、EDCDP、およびRJRRは、DOST-SEI S&T Undergraduate Scholarshipによってサポートされています。DODLは、トーマス・スタインバグラー神父SJ学術奨学金によってサポートされています。RJRRは、Aiducation International–Pathways to Higher Education Scholarshipによってサポートされています。この研究は、アテネオデマニラ大学の理工学部とリサール図書館の支援を受けました。
Acrylic Gel Clear Double Sided Nano Tape 16.5 ft x 1.2 in, 2 mm thick | EZlifego Store (Amazon) | B07YB1ZXG6 | 1 roll |
Bellucci Pick Curved micro probe 16.8 cm, 6.6 in | Bausch & Lomb | N1692 9 | 1 pc |
Clayman guide microprobe Sinskey hook angled shaft, 11.6 cm, 4.6 in | Storz Opthalmic Instruments | E0542 | 1 pc |
Dental Probe, Bent Needle, 14 cm (5.5 in) | Ted Pella | 13553 | 1 pc |
DOWELL 10-22 AWG Wire Stripper | Dowell Store (Amazon) | 10-22 AWG | 1 pc |
Feather Double Edge Carbon Steel Blades | Ted Pella | 121-9 | pkg/10; for fine sectioning |
Frosted End Glass Microscope Slides, 75 mm x 25 mm x 1-1.2 mm | Ted Pella | 260442 | pkg/144 |
GEM Single Edge, Stainless Steel Uncoated Blades | Ted Pella | 121-1 | box/200; for general cutting/sectioning |
Glycerol | Thermo Scientific | PI17904 | 1 liter |
ImageJ/FIJI with EDF plugin (version 17.05.2021) and Grid/Collection Stitching plugin | National Institutes of Health (NIH) USA | version 2.9.0/1.54s | The EDF plugin was developed by Alex Prudencio, Jesse Berent, and Daniel Sage for the Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne (EPFL; http://bigwww.epfl.ch/demo/edf/). The grid/collection stitching software was developed by Stephan Preibisch for the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG). |
Kimwipes Ex-L Small 111.76 mm x 213.36 mm | Kimtech Science | 34155 | box/280 ply |
Micro Cover Glasses, 22 mm x 22 mm x 0.13 – 0.16 mm thick | Ted Pella | 260140 | 1 ounce |
PU Gel Clear Double Sided Nano Tape 29.5 ft x 1.18 in, 1 mm thick | Yecaye Store (Amazon) | L354 W1.18 | 2 rolls |
Superslip Cover Glasses, 24 mm x 50 mm x 0.13 – 0.16 mm thick | Ted Pella | 260166 | 1 ounce |
Superslip Cover Glasses, 24 mm x 60 mm x 0.13 – 0.16 mm thick | Ted Pella | 260168 | 1 ounce |
Tempered Glass Cutting Board | Hacaroa (Amazon) | B09XMXBT5S | 4 pc |