本稿では、チラミドシグナル増幅(TSA)マルチプレックス免疫蛍光法(mIF)と画像解析および空間解析を組み合わせたプロトコルについて説明します。このプロトコルは、実験室で利用可能なスライドスキャナーに応じて、スライドごとに2〜6個の抗原を染色するために、ホルマリン固定パラフィン包埋(FFPE)セクションで使用できます。
腫瘍微小環境(TME)は、細胞傷害性免疫細胞や免疫調節細胞など、さまざまな種類の細胞で構成されています。TMEは、その組成および癌細胞と腫瘍周囲細胞との間の相互作用に応じて、癌の進行に影響を与える可能性があります。腫瘍とその複雑な微小環境の特性評価は、がん疾患の理解を深める可能性があり、科学者や臨床医が新しいバイオマーカーを発見するのに役立つ可能性があります。
私たちは最近、結腸直腸癌、頭頸部扁平上皮癌、黒色腫、および肺癌におけるTMEの特性評価のために、チラミドシグナル増幅(TSA)に基づくいくつかのマルチプレックス免疫蛍光(mIF)パネルを開発しました。対応するパネルの染色とスキャンが完了すると、サンプルは画像分析ソフトウェアで分析されます。次に、各細胞の空間位置と染色が、この定量ソフトウェアからRにエクスポートされます。私たちは、いくつかの腫瘍コンパートメント(腫瘍の中心、腫瘍の縁、間質など)の各細胞タイプの密度を分析するだけでなく、異なる細胞タイプ間の距離ベースの分析も実行できるRスクリプトを開発しました。
この特定のワークフローは、いくつかのマーカーに対してすでに日常的に実行されている古典的な密度解析に空間次元を追加します。mIF解析により、科学者はがん細胞とTMEの複雑な相互作用をよりよく理解し、免疫チェックポイント阻害剤や標的療法などの治療に対する反応の新しい予測バイオマーカーを発見することができます。
標的療法や免疫チェックポイント阻害剤の開発に伴い、がん細胞とその腫瘍微小環境との相互作用をよりよく特徴づけることが最も重要になり、現在、これはトランスレーショナル研究の重要な分野です。TMEは、がん細胞を標的とする免疫細胞傷害性細胞と、腫瘍の増殖と浸潤性を促進する可能性のある免疫調節細胞のバランスを備えた、多数の異なる細胞タイプで構成されています1,2,3,4。この複雑な環境の特性評価は、がん疾患の理解を深める可能性があり、科学者や臨床医が将来の治療のために患者をより適切に選択するために、新しい予測および予後バイオマーカーを発見するのに役立つ可能性があります5,6。たとえば、ガロンと彼のチームは、予測バイオマーカーとして使用できる再現可能なスコアリング方法であるイムノスコアを開発しました。免疫スコアは、浸潤性マージンおよび腫瘍の中心におけるCD3 +およびCD8+ T細胞の密度を使用して計算されます7,8。
過去数十年にわたって、mIFの商用ソリューションが開発されてきましたが、これらは多くの場合高価であり、抗原の特定のパネル用に設計されています。学術研究およびトランスレーショナル研究における抗原の特定のパネルの必要性を克服するために、FFPE腫瘍切片でmIFを実行する費用効果の高い方法を開発し、ヒトおよびマウスサンプルの細胞核に添加された2〜6個の抗原の対比染色を可能にしました。
組織切片全体を染色し、蛍光スライドスキャナーでスキャンすると、大きなピラミッド型データセットをサポートするいくつかの画像解析ソフトウェアでサンプルを分析できます。最後に、生データは、密度および空間ベースの分析を実行するために、Rソフトウェア(v.4.0.2)のような統計計算およびグラフィックス用の環境で使用できます。
この原稿では、5マーカー染色に最適化されたプロトコルと、新しいパネルを最適化するためのトリックとヒントを紹介しています。さらに、画像解析の詳細な手順と、統計的および空間的分析に使用されるR関数について説明します。
マルチプレックス染色を最適化するために考慮すべき最も重要なパラメータは、各一次抗体に使用される希釈率、特異性、および抗原賦活化です。マルチプレックスプロトコルを開始する前に、各一次抗体の最適な希釈率と最適なエピトープ検索(pH 6またはpH 9)を発色染色(DAB)を使用してテストする必要があります。抗原賦活化バッファーごとに、抗体を商品化するブランドによって通常指定されている希釈液、同じ希釈液を2倍に分割し、同じ希釈液を2倍にした希釈液の3つの希釈液を試験することをお勧めします(図8)。適切な希釈液を選択することは、抗体の特異性を検証し、染色のシグナル対ノイズ比(SNR)を最適化するための非常に重要なステップです。DABで適切な希釈を選択した後、ユニプレックスTSAを使用して各一次抗体について同じ希釈率をテストする必要があります。抗原染色ごとに希釈バッファーとエピトープ検索バッファーを選択したら、マルチプレックスの配列を正しく設定することも重要です。具体的には、一部の抗原は最初の位置でよりよく染色され、他の抗原は最後の位置でよりよく染色されます。考えられるすべての順序順列を使用してマルチプレックス標識をテストし、どの抗原染色を最初、2番目などを選択するかを選択することをお勧めします。一部の脆弱な抗原は数ラウンドのエピトープ賦活化後に分解される可能性があり、一部の抗原は数ラウンドのエピトープ賦活化後によりよく染色されるため、これも非常に重要なステップです。例えば、SNRは、CD3の最後の位置とPD-1染色の最初の位置で常に高くなります。さらに、いくつかの共局在抗原の染色は、アンブレラ効果(チラミド反応部位の飽和)によって妨げられる可能性があります。これは、チラミド濃度を下げることで弱めることができます。ある抗原の発現が別の抗原の発現によって条件付けられている場合(CD8はCD3発現T細胞にのみ存在します)、他の抗原の後に最も広い発現(この場合はCD3)で抗原を染色することをお勧めします。最後に、スキャナーの特異性に応じて各抗原染色に適した蛍光色素を選択することも、交差検出を回避するための重要なステップです。
この技術の主な利点は、増幅と得られる信号対雑音比です。しかしながら、この技術には、染色が連続的であり、蛍光色素が組織に共有結合しているという制限がある。それにもかかわらず、全てのチラミドシグナル増幅ラウンドを行った後、蛍光色素(TSAなし)と直接結合した二次抗体による最後の染色を加えることもできる。一部のパネルでは、この方法を使用して750チャンネルに染色を追加しました。当時、チラミドAF750は市販されていなかったため、これは必要でした。注目すべきことに、AF750で染色された抗原の曝露時間(スキャン中)は、TSAで染色された他の抗原よりもはるかに長くなります。その場合は、サイトケラチンなどの高発現タンパク質を染色するか、一次抗体の濃度を上げることをお勧めします。そうすることで、蛍光スキャナーに応じて、1回のバッチでスライドあたり最大5〜6個の抗原を染色することができます。
反対に、いくつかの市販の技術は、1つの組織切片で染色できる抗原の数を改善するために、数回の染色、スキャン、およびストリッピングまたは光退色を伴う連続染色を使用する。ただし、これらの手法は、多くの場合、時間と費用がかかり、信号増幅がなく、シリアルスキャンを正しくマージするために高度な計算手順が必要であり、私たちの経験では、多数の手順ステップのために不可逆的な組織損傷を引き起こす可能性があります。それにもかかわらず、この方法を使用すると、1つの組織で最大30の抗原を染色できることが報告されています14。
結論として、私たちの方法は、蛍光スライドスキャナーを所有するあらゆるラボで使用できる、堅牢で再現性があり、使いやすく、費用対効果の高い免疫組織蛍光技術です。IHCに適した市販の一次抗体であればどれでも使用でき、パネルは市販のキットに特異的ではありません。画像解析は、QuPathやRなどのオープンソースプログラムを含むいくつかの異なるプログラムで実行できます。しかし、この方法は将来的には大きな抗原パネルにも改善される可能性があり、異なる抗原パネルで同じスライドの連続染色/スキャンを実行でき、シグナル増幅の利点が得られると考えています。
The authors have nothing to disclose.
著者らは、Derouane F博士の助けと支援に感謝したい。Nicolas Huygheは、ベルギー国立科学研究基金(Télévie/FNRS 7460918F)からの助成金を受けて支援されている研究員です。
anti-CD3 primary antibody | Abcam | ab16669 | rabbit monocolonal |
anti-CD8 primary antibody | DAKO | M710301 | mouse monoclonal |
anti-hPanCK primary antibody | DAKO | M3515 | mouse monoclonal |
anti-PD-1 primary antibody | Cell Signalling | D4W2J | rabbit monocolonal |
anti-PD-L1 primary antibody | Cell Signalling | 13684 | rabbit monocolonal |
anti-RORC primary antibody | Sigma | MABF81 | mouse monoclonal |
ATTO-425 | ATTOtec | ||
Axioscan Z1 | Zeiss | Light source: Colibri 7 (385, 430, 475, 555, 590, 630, 735 nm) Filtersets: Excitation 379/34 – beam splitter 409 – emission 440/40; Excitation 438/24 – beam splitter 458 – emission 483/32; Excitation 490/20 – beam splitter 505 – emission 525/20; Excitation 546/10 – beam splitter 556 – emission 572/23; Excitation 592/21 – beam splitter 610 – emission 630/30; Excitation 635/18 – beam splitter 652 – emission 680/42; Excitation 735/40 – beam splitter QBS 405 + 493 + 611 + 762 – emission QBP 425/30 + 524/51 + 634/38 + 785/38; Objective: Plan-Apochromat 20x/0.8; Camera : Orca Flash 4.0 V3 | |
Borosilicate Cover Glass | VWR | 631-0146 | |
Envision+ anti-mouse | DAKO | K4001 | |
Envision+ anti-rabbit | DAKO | K4003 | |
Fluorescence mounting medium | DAKO | S3023 | |
Goat anti-Mouse IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 750 | ThermoFischer | A-21037 | |
HALO software | Indicalabs | ||
Hoescht | Sigma | 14533 | |
Superfrost plus microscope slides | Fisherscientific/Epredia | 10149870 | |
Tyramide-AF488 | ThermoFischer | B40953 | |
Tyramide-AF555 | ThermoFischer | B04955 | |
Tyramide-AF647 | ThermoFischer | B04958 |