疟疾是通过受感染的蚊子接种 疟原虫 的子孢子阶段传播的。转基因 疟原虫 使我们能够更好地了解疟疾的生物学,并直接促进了疟疾疫苗的开发工作。在这里,我们描述了一种生成转基因 伯氏疟 原虫孢子体的简化方法。
疟疾是一种由寄生虫疟原虫引起的致命疾病,通过雌性按蚊叮咬传播。蚊子沉积在脊椎动物宿主皮肤中的疟原虫孢子阶段在开始临床疟疾之前在肝脏中经历了一个强制性发育阶段。我们对肝脏中疟原虫发育的生物学知之甚少;进入孢子阶段和对这种孢子进行基因改造的能力是研究疟原虫感染性质和肝脏中由此产生的免疫反应的关键工具。在这里,我们提出了用于产生转基因伯氏疟原虫孢子体的综合方案。我们对血液阶段的伯氏疟原虫进行基因改造,并在按蚊吸血时使用这种形式感染按蚊。转基因寄生虫在蚊子中发育后,我们从蚊子唾液腺中分离出寄生虫的孢子阶段,进行体内和体外实验。我们通过生成表达绿色荧光蛋白 (GFP) 亚基 11 (GFP11) 的新型伯氏疟原虫菌株的孢子来证明该协议的有效性,并展示了如何将其用于研究肝期疟疾的生物学。
尽管在药物开发和疟疾预防和治疗研究方面取得了进展,但疟疾的全球疾病负担仍然很高。每年有五十多万人死于疟疾,其中生活在疟疾流行地区(如撒哈拉以南非洲)的儿童死亡率最高1。疟疾是由寄生虫疟原虫引起的,疟原虫通过唾液腺中携带寄生虫的雌性按蚊叮咬传播给人类。疟原虫的感染阶段 – 子孢子 – 在血粉中沉积在脊椎动物宿主的皮肤中,并通过血液感染肝细胞,在感染红细胞之前,它们会经历强制性发育(构成红细胞前期疟疾)。红细胞感染启动了疟疾的血液阶段,并导致了与该疾病相关的全部发病率和死亡率 2,3。
疟原虫红细胞前发育的专性使其成为预防性疫苗和药物开发工作的有吸引力的靶标4.研究红细胞性疟疾前期的生物学以及开发针对肝脏阶段的疫苗或药物的先决条件是获得疟原虫孢子体。此外,我们产生转基因疟原虫孢子体的能力对此类研究工作的成功起到了重要作用5,6,7,8,9。表达荧光或发光报告蛋白的转基因疟原虫系使我们能够跟踪它们在体内和体外的发育 10,11。通过疟原虫中多个基因的缺失而产生的遗传减毒寄生虫 (GAP) 也是一些最有希望的候选疫苗12,13。
啮齿动物和非人类灵长类疟疾模型有助于我们了解人类疟疾中宿主-寄生虫相互作用的机制,因为疟原虫物种在生物学和生命周期方面具有相似性14.使用感染啮齿动物但不感染人类的疟原虫物种(例如,伯氏疟原虫)可以维持完整的寄生虫生命周期并产生传染性子孢子体,以便在受控的生物安全 1 级环境中研究肝期疟疾。对于转基因血液阶段疟原虫寄生虫的产生 15、蚊子感染 16 和孢子体分离17,已经存在各种单独的方案。在这里,我们概述了一种结合这些方法的综合方案,以产生和分离转基因伯氏疟原虫子,以新型转基因菌株PbGFP11为例。PbGFP 11 将超文件夹绿色荧光蛋白 (GFP) 的第 11 β链 GFP11 转运到宿主肝细胞中产生的寄生虫液泡 (PV) 中。PbGFP 11 与转基因肝细胞(Hepa1-6 背景)结合使用,这些转基因肝细胞表达在细胞质(Hepa GFP 1-10 细胞)中构成 GFP 1-10 片段 (GFP 1-10) 的残基。PbGFP11 通过自我互补和功能性 GFP 的重建以及绿色荧光信号18 报道宿主肝细胞中的 PV 裂解。值得注意的是,GFP 11 在 PbGFP11 中被编码为一系列七个串联序列,以增强产生的荧光信号。用细胞质染料 CellTrace Violet (CTV) 对 PbGFP11 孢子体进行染色后,我们可以追踪寄生虫。这种CTV染色的细胞内寄生虫本身的裂解导致CTV泄漏到宿主细胞质中并对宿主细胞进行染色。除了可视化和区分宿主肝细胞中疟原虫PV和/或寄生虫的裂解外,该系统还可以可靠地用于研究负责这些过程的免疫途径,通过遗传或治疗扰动这些途径的分子成分。
我们已经在我们的实验室中使用了上述方案来创建几种转基因 伯氏疟 原虫寄生虫系。虽然针对 P. berghei 进行了优化,但我们也成功地使用该协议来生成转基因 P. yoelii 子孢子。将转染的裂殖体注射到小鼠体内后,寄生虫通常不晚于3 d.p.i.在所有组中检测到,包括无质粒对照。只有在检测到寄生虫血症后才开始选择,以确保电穿孔后寄生虫的活力。此外,在准备药物选择时,可?…
The authors have nothing to disclose.
这项工作得到了美国国立卫生研究院(National Institutes of Health)对SPK的资助AI168307。 我们感谢 UGA CTEGD 流式细胞术核心和 UGA CTEGD 显微镜核心。我们还要感谢 Ash Pathak、Anne Elliot 和 UGA Sporocore 的工作人员在优化协议方面的贡献。我们要感谢 Daichi Kamiyama 博士的宝贵见解、讨论以及含有 GFP11 和 GFP 1-10 的亲本质粒。我们还要感谢Kurup实验室成员一直以来的支持、耐心和鼓励。
30 G x 1/2" Syringe needle | Exel international | 26437 | |
Alsever's solution | Sigma-Aldritch | A3551-500ML | |
Amaxa Basic Parasite Nucleofector Kit 2 | Lonza | VMI-1021 | |
Avertin (2,2,2-Tribromoethanol) | TCI America | T1420 | |
Blood collection tubes | BD bioscience | 365967 | for serum collection |
C-Chip disposable hematocytometer | INCYTO | DHC-N01-5 | |
CellVeiw Cell Culture Dish | Greiner Bio-One | 627860 | |
Centrifuge 5425 | Eppendorf | 5405000107 | |
Centrifuge 5910R | Eppendorf | 5910R | For gradient centrifugation |
Delta Vision II – Inverted microscope system | Olympus | IX-71 | |
Dimethyl Sulfoxide | Sigma | D5879-500ml | |
Fetal bovine serum | GenClone | 25-525 | |
GFP11 plasmid | Kurup Lab | pSKspGFP11 | Generated from PL0017 plasmid |
Giemsa Stain | Sigma-Aldritch | 48900-1L-F | |
Hepa GFP1-10 cells | Kurup Lab | Hepa GFP1-10 | Generated from Hepa 1-6 cells (ATCC Cat# CRL-1830) |
Mouse Serum | Used for mosquito dissection media | ||
NaCl | Millipore-Sigma | SX0420-5 | 1.5 M and 0.15 M for percoll solution |
Nucleofector II | Amaxa Biosystems (Lonza) | Program U-033 used for RBC electroporation | |
Pasteur pipette | VWR | 14673-043 | |
Penicillin/Streptomycin | Sigma-Aldritch | P0781-100ML | |
Percoll (Density gradient stock medium) | Cytivia | 17-0891-02 | Details in protocol |
PL0017 Plasmid | BEI Resources | MRA-786 | |
Pyrimethamine (for oral administration) | Sigma | 46706 | Preparation details: Add 17.5 mg Pyrimethamine to 2.5 mL of DMSO. Vortex, if needed to dissolve completely; Adjust pH of 225 mL of dH2O to 4 using HCL. Add Pyrimethamine in DMSO to water and bring to 250 mL. Add 10 g of sugar to encourage regular consumption of drugged water. Pyrimethamine is light sensitive. Use dark bottle or aluminum foil covered bottle when treating mice. |
RPMI 1640 | Corning | 15-040-CV | |
SoftWoRx microscopy software | Applied Precision | v6.1.3 |