Summary

鼻自组装纳米乳肿瘤疫苗体外和体内制备、特性、毒性及疗效评价

Published: September 28, 2022
doi:

Summary

在这里,我们提出了鼻自组装纳米乳肿瘤疫苗体 和体内制备和评价的详细方法

Abstract

表位肽因其安全性、高特异性、生产方便等特点在肿瘤疫苗领域受到广泛关注;特别是,一些MHC I限制性表位可以诱导有效的细胞毒性T淋巴细胞活性以清除肿瘤细胞。此外,鼻腔给药是一种有效且安全的肿瘤疫苗递送技术,因为它具有便利性和提高患者依从性。然而,表位肽因其免疫原性差且缺乏递送效率而不适合鼻腔递送。纳米乳液(NEs)是热力学稳定的系统,可以加载抗原并直接递送到鼻粘膜表面。Ile-Lys-Val-Ala-Val(IKVAV)是层粘连蛋白的核心五肽,层粘连蛋白是一种由人呼吸道上皮细胞表达的整合素结合肽。本研究采用低能量乳化法制备了含有合成肽IKVAV-OVA257-264(I-OVA )的鼻内自组装表位肽NE肿瘤疫苗。IKVAV和OVA257-264 的组合可以增强鼻粘膜上皮细胞的抗原摄取。在这里,我们建立了一个协议,通过透射电子显微镜(TEM),原子力显微镜(AFM)和动态光散射(DLS)研究物理化学特性;粘蛋白存在下的稳定性;通过检查BEAS-2B细胞的细胞活力以及C57BL / 6小鼠的鼻和肺组织的毒性;通过共聚焦激光扫描显微镜(CLSM)摄取细胞;通过 体内小动物成像释放曲线;以及通过使用E.G7荷瘤模型的疫苗的保护和治疗效果。我们预计该协议将为新型T细胞表位肽粘膜疫苗的未来开发提供技术和理论线索。

Introduction

作为最重要的公共卫生创新之一,疫苗在抗击全球人类疾病负担方面发挥着关键作用1。例如,目前正在测试120多种COVID-19疾病的候选疫苗,其中一些已在许多国家获得批准2。最近的报告指出,癌症疫苗有效地改善了临床癌症治疗的进展,因为它们指导癌症患者的免疫系统识别出身体外来的抗原3。此外,位于肿瘤细胞内部或外部的多个T细胞表位可用于设计肽疫苗,由于缺乏与放疗和化疗相关的显着毒性,其在治疗转移性癌症方面显示出优势45。自1990年代中期以来,主要使用抗原肽疫苗进行肿瘤治疗的临床前和临床试验,但很少有疫苗对癌症患者表现出足够的治疗效果6。此外,具有肽表位的癌症疫苗免疫原性差,递送效率不足,这可能是由于从给药部位迅速扩散的细胞外肽快速降解,导致免疫细胞抗原摄取不足7。因此,有必要用疫苗输送技术克服这些障碍。

OVA 257-264是MHC I类结合257-264表位,表达为融合蛋白,是一种常用的模型表位8。此外,OVA257-264 对针对肿瘤的适应性免疫应答至关重要,这取决于细胞毒性T淋巴细胞(CTL)反应。它由肿瘤中的抗原特异性CD8 + T细胞介导,这些CD8 + T细胞由OVA257-264 肽诱导。其特征是颗粒酶B不足,由细胞毒性T细胞释放,导致靶细胞凋亡8。然而,游离的OVA257-264 肽给药可能诱导很少的CTL活性,因为这些抗原的摄取发生在非特异性细胞而不是抗原呈递细胞(APC)中。缺乏适当的免疫刺激导致CTL活性5。因此,有效的CTL活性的诱导需要相当大的进步。

由于上皮细胞提供的屏障和粘液的持续分泌,疫苗抗原迅速从鼻粘液中去除910。开发一种可以穿过粘膜组织的高效疫苗载体至关重要,因为抗原呈递细胞位于粘膜上皮9下方。鼻内注射疫苗理论上诱导粘膜免疫以对抗粘膜感染11。此外,鼻腔给药是一种有效且安全的疫苗给药方法,因为它方便,避免肠道给药,并改善了患者的依从性7。因此,鼻腔给药是新型肽表位纳米疫苗的良好给药手段。

已经设计了几种合成生物材料来结合细胞 – 组织和细胞 – 细胞相互作用的表位。某些生物活性蛋白质,如Ile-Lys-Val-Ala-Val(IKVAV),已被引入作为水凝胶结构的一部分,以赋予生物活性12。这种肽可能有助于细胞附着、迁移和生长13 ,并结合整合素α3β1α 6β1 与不同的癌细胞类型相互作用。IKVAV是一种细胞粘附肽,来源于层粘连蛋白基底膜蛋白α 1 链,最初用于模拟神经微环境并引起神经元分化14。因此,为这种新型疫苗找到有效的输送载体对于疾病控制非常重要。

最近报道的乳液系统,如W805EC和MF59,也已用于灭活流感疫苗或重组乙型肝炎表面抗原的鼻腔递送,并说明可触发粘膜和全身免疫15。与颗粒粘膜递送系统相比,纳米乳液(NEs)具有易于给药和与有效佐剂共形成方便的优点16。据报道,纳米乳剂疫苗以不同于传统脱敏的持续方式改变过敏表型,从而导致长期抑制作用17。其他人报告说,纳米乳剂与Mtb特异性免疫显性抗原相结合可以诱导有效的粘膜细胞反应并赋予显着的保护18。因此,设计了一种以合成肽IKVAV-OVA 257-264(I-OVA,由与OVA257-264结合的IKVAV组成的肽)的新型鼻内自组装纳米疫苗。系统地评估这种新型纳米疫苗非常重要。

该方案的目的是系统地评估纳米疫苗的理化特性、毒性和稳定性,检测抗原摄取以及是否利用技术手段增强保护和治疗效果,并阐述主要实验内容。在这项研究中,我们建立了一系列方案来研究其理化特性和稳定性,确定CCK-8对BEAS-2B细胞的I-OVA NE的毒性大小,并使用共聚焦显微镜观察BEAS-2B细胞对疫苗的抗原呈递能力,评估这种新型纳米疫苗在体内和体外释放曲线。,并使用E.G7-OVA荷瘤小鼠模型检测该疫苗的保护和治疗效果。

Protocol

动物实验按照《实验动物—动物福利伦理评审导则》(GB/T 35892-2018)进行,并经第三军医大学实验动物福利与伦理委员会批准。通过腹膜内注射100mg / kg的1%戊巴比妥钠对小鼠实施安乐死。 1. I-OVA NE的准备 将1mg单磷酸脂质A(MPLA)与100μLDMSO混合,涡旋5分钟,并在室温(RT)下静置4小时以完全溶解。 定量加入吐温80和I-OVA并混合。注:吐温80和I-OVA?…

Representative Results

根据该方案,我们完成了鼻肿瘤纳米疫苗递送的制备和体外和体内实验评估。TEM、AFM 和 DLS 是评估纳米疫苗表面 zeta 电位和粒径的基本特性的有效手段(图 1)。BEAS-2B上皮细胞是鼻腔疫苗体外毒性测试的有用筛选模型(图2A)。用H&E染色的显微照片表明I-OVA NE没有明显的粘膜毒性,包括组织损伤,出血或炎症细胞浸润(<strong class="xfi…

Discussion

用免疫细胞膜功能化的纳米疫苗在疾病靶向治疗中具有很大的优势,并且通过独特的肿瘤嗜性、特异性靶点的识别、延长的循环、增强的细胞间相互作用和低全身毒性等特性将副作用降至最低。它们还可以轻松地与其他治疗模块集成,以合作治疗癌症1620。通过控制物理和化学性质(如测量、形状和电荷)可以获得所需的属性。因此,纳米疫苗在广泛?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

本研究由国家自然科学基金项目项目第31670938号、32070924号32000651、重庆市自然科学基金项目编号2014jcyjA0107、2019jcyjA-msxmx0159、陆军军医大学专项项目编号2020XBK24、2020XBK26号、国家大学生创新创业计划202090031021号、第202090031035号支持。

Materials

96-well plates Corning Incorporated, USA CLS3922
Bio-Rad 6.0 microplate reader Bio-Rad Laboratories Incorporated Limited Co., CA, USA  Bio-Rad 6.0
CCK-8 kits Dojindo, Japan CK04
Centrifuge 5810 R Eppendorf, Germany  5811000398
DAPI Sigma-Aldrich, St. Louis, USA D9542
fetal bovine serum (FBS) Hyclone (Life Technology, USA) SH30088.03
FITC-labeled I-OVA Shanghai Botai
Biotechnology Co., Ltd.
NA
HF 90/240 Incubator Heal Force, Switzerland NA
HPLC  Shanghai Botai Biotechology Co., Ltd. E2695
Inverted Microscope Nikon,Japan DSZ5000X
IPC-208 Chong Qing University, China NA
IVIS system  Caliper Life Science Limited Company NA
JEM-1230 TEM JEOL Limited Company of Japan 1230 TEM
Malvern NANO ZS Malvern Instruments Ltd., UK NA
MPLA  Invivogen
Lit. Co.
tlrl-mpla
Neomycin Sulfate Ointment Shanghai CP General Pharmaceutical Co. , Ltd. H31022262
OVA257–264 Shanghai Botai
Biotechnology Co., Ltd.
NA
RPMI 1640 medium Hyclone (Life Technology, USA) SH30809.01
Synthetic peptide (I-OVA) conjugation of IKVAV-PA Shanghai Botai
Biotechnology Co., Ltd.
NA
Zeiss LSM800 laser scanning confocal fluorescence microscope Zeiss, Germany Zeiss LSM800

References

  1. Sung, H., et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 71 (3), 209-249 (2021).
  2. Mohammed, I., et al. The efficacy and effectiveness of the COVID-19 vaccines in reducing infection, severity, hospitalization, and mortality: A systematic review. Human Vaccines & Immunotherapeutics. 18 (1), 2027160 (2022).
  3. Tsung, K., Norton, J. A. In situ vaccine, immunological memory and cancer cure. Human Vaccines & Immunotherapeutics. 12 (1), 117-119 (2016).
  4. Abd-Aziz, N., Poh, C. L., Ding, X. Development of peptide-based vaccines for cancer. Journal of Oncology. 2022, 9749363 (2022).
  5. Mochizuki, S., et al. Immunization with antigenic peptides complexed with beta-glucan induces potent cytotoxic T-lymphocyte activity in combination with CpG-ODNs. Journal of Controlled Release. 220, 495-502 (2015).
  6. Kalita, P., Tripathi, T. Methodological advances in the design of peptide-based vaccines. Drug Discovery Today. 27 (5), 1367-1380 (2022).
  7. Yang, Y., et al. A novel self-assembled epitope peptide nanoemulsion vaccine targeting nasal mucosal epithelial cell for reinvigorating CD8(+) T cell immune activity and inhibiting tumor progression. International Journal of Biological Macromolecules. 183, 1891-1902 (2021).
  8. Ren, Y., et al. OVA-specific CD8+ T cells do not express granzyme B during anterior chamber associated immune deviation. Graefe’s Archive for Clinical and Experimental Ophthalmology. 244 (10), 1315-1321 (2006).
  9. Suzuki, K., et al. Preparation of hyaluronic acid-coated polymeric micelles for nasal vaccine delivery. Biomaterials Science. 10 (8), 1920-1928 (2022).
  10. Georas, S. N., Rezaee, F. Epithelial barrier function: at the front line of asthma immunology and allergic airway inflammation. The Journal of Allergy and Clinical Immunology. 134 (3), 509-520 (2014).
  11. Lam, J. Y., et al. A nasal omicron vaccine booster elicits potent neutralizing antibody response against emerging SARS-CoV-2 variants. Emerging Microbes & Infections. 11 (1), 964-967 (2022).
  12. Chai, Y., et al. Improved functional recovery of rat transected spinal cord by peptide-grafted PNIPAM based hydrogel. Colloids and Surfaces B: Biointerfaces. 210, 112220 (2022).
  13. Paiva Dos Santos, B., et al. Production, purification and characterization of an elastin-like polypeptide containing the Ile-Lys-Val-Ala-Val (IKVAV) peptide for tissue engineering applications. Journal of Biotechnology. 298, 35-44 (2019).
  14. Okur, A. C., Erkoc, P., Kizilel, S. Targeting cancer cells via tumor-homing peptide CREKA functional PEG nanoparticles. Colloids and Surfaces B: Biointerfaces. 147, 191-200 (2016).
  15. Makidon, P. E., et al. Pre-clinical evaluation of a novel nanoemulsion-based hepatitis B mucosal vaccine. PLoS One. 3 (8), 2954 (2008).
  16. Lin, X., et al. Oil-in-ionic liquid nanoemulsion-based intranasal delivery system for influenza split-virus vaccine. Journal of Controlled Release. 346, 380-391 (2022).
  17. O’Konek, J. J., et al. Intranasal nanoemulsion vaccine confers long-lasting immunomodulation and sustained unresponsiveness in a murine model of milk allergy. Allergy. 75 (4), 872-881 (2020).
  18. Ahmed, M., et al. A novel nanoemulsion vaccine induces mucosal Interleukin-17 responses and confers protection upon Mycobacterium tuberculosis challenge in mice. Vaccine. 35 (37), 4983-4989 (2017).
  19. Sun, H., et al. Induction of systemic and mucosal immunity against methicillin-resistant Staphylococcus aureus infection by a novel nanoemulsion adjuvant vaccine. International Journal of Nanomedicine. 10, 7275-7290 (2015).
  20. Chen, C., et al. Tumor-associated-macrophage-membrane-coated nanoparticles for improved photodynamic immunotherapy. Nano Letters. 21 (13), 5522-5531 (2021).
  21. Prasanna, P., et al. Current status of nanoscale drug delivery and the future of nano-vaccine development for leishmaniasis – A review. Biomedicine & Pharmacotherapy. 141, 111920 (2021).
  22. George, S., et al. Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. ACS Nano. 6 (5), 3745-3759 (2012).
  23. Jafari Eskandari, M., Gostariani, R., Asadi Asadabad, M., Singh, D., Condurache-Bota, S. Transmission Electron Microscopy of Nanomaterials. Electron Crystallography. , (2020).
  24. Kontomaris, S. V., Stylianou, A., Malamou, A. Atomic force microscopy nanoindentation method on collagen fibrils. Materials. 15 (7), 2477 (2022).
  25. Zielinska, A., et al. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules. 25 (16), 3731 (2020).
  26. Doncom, K. E. B., Blackman, L. D., Wright, D. B., Gibson, M. I., O’Reilly, R. K. Dispersity effects in polymer self-assemblies: A matter of hierarchical control. Chemical Society Reviews. 46 (14), 4119-4134 (2017).
  27. Pei, M., Li, H., Zhu, Y., Lu, J., Zhang, C. In vitro evidence of oncofetal antigen and TLR-9 agonist co-delivery by alginate nanovaccines for liver cancer immunotherapy. Biomaterials Science. 10 (11), 2865-2876 (2022).
  28. Zhang, J., et al. Titanium dioxide nanoparticles induced reactive oxygen species (ROS) related changes of metabolomics signatures in human normal bronchial epithelial (BEAS-2B) cells. Toxicology and Applied Pharmacology. 444, 116020 (2022).
  29. Kumar, V., Sharma, N., Maitra, S. S. In vitro and in vivo toxicity assessment of nanoparticles. International Nano Letters. 7 (4), 243-256 (2017).
  30. Tong, Y. N., et al. An immunopotentiator, ophiopogonin D, encapsulated in a nanoemulsion as a robust adjuvant to improve vaccine efficacy. Acta Biomaterialia. 77, 255-267 (2018).
  31. Elliott, A. D. Confocal microscopy: Principles and modern practices. Current Protocols in Cytometry. 92 (1), 68 (2020).
  32. Huang, Y., Zou, Y., Lin, L., Zheng, R. Ginsenoside Rg1 activates dendritic cells and acts as a vaccine adjuvant inducing protective cellular responses against lymphomas. DNA and Cell Biology. 36 (12), 1168-1177 (2017).

Play Video

Citer Cet Article
Zhang, Z., Cai, D., Ge, S., Luo, X., Zeng, X., Ye, Y., Song, Z., Peng, L., Li, H., Zou, Q., Zeng, H., Sun, H., Yang, Y. Preparation, Characteristics, Toxicity, and Efficacy Evaluation of the Nasal Self-Assembled Nanoemulsion Tumor Vaccine In Vitro and In Vivo. J. Vis. Exp. (187), e64299, doi:10.3791/64299 (2022).

View Video