Протокол описывает, как генерировать нокаутирующие миобласты с помощью CRISPR/Cas9, начиная от проектирования направляющих РНК до клеточного клонирования и характеристики нокаутирующих клонов.
Одним из важных применений кластерных регуляторных межпространственных коротких палиндромных повторов (CRISPR)/Cas 9 является разработка нокаутирующих клеточных линий, в частности, для изучения функции новых генов/белков, связанных с заболеванием, выявленных в ходе генетической диагностики. Для развития таких клеточных линий необходимо распутать две основные проблемы: вставка инструментов CRISPR (Cas9 и направляющая РНК) с высокой эффективностью в выбранные клетки и ограничение активности Cas9 специфической делецией выбранного гена. Протокол, описанный здесь, посвящен вставке инструментов CRISPR в трудно трансфектируемые клетки, такие как мышечные клетки. Этот протокол основан на использовании лентивирусов, продуцируемых с плазмидами, общедоступными, для которых все этапы клонирования описаны для нацеливания на интересующий ген. Контроль активности Cas9 был выполнен с использованием адаптации ранее описанной системы под названием KamiCas9, в которой трансдукция клеток лентивирусом, кодирующим направляющую РНК, нацеленную на Cas9, позволяет прогрессировать отмену экспрессии Cas9. Этот протокол был применен к разработке RYR1-нокаутирующей линии мышечных клеток человека, которая была дополнительно охарактеризована на белковом и функциональном уровне, чтобы подтвердить нокаут этого важного кальциевого канала, участвующего в внутриклеточном высвобождении кальция мышц и в связи возбуждение-сокращение. Процедура, описанная здесь, может быть легко применена к другим генам в мышечных клетках или в других трудно трансфектируемых клетках и производить ценные инструменты для изучения этих генов в клетках человека.
С прогрессом секвенирования генов и идентификацией мутаций в генах неизвестных функций в конкретной ткани разработка соответствующих клеточных моделей для понимания функции нового гена-мишени и подтверждения его участия в связанных патофизиологических механизмах представляет собой важный инструмент. Кроме того, эти модели имеют большое значение для будущих терапевтических разработок 1,2 и представляют собой интересную альтернативу разработке нокаутированных моделей животных в прямой линии с международными рекомендациями по сокращению использования животных в экспериментах. Редактирование генов с использованием CRISPR / Cas9 является одним из самых мощных инструментов, доступных в настоящее время, что позволило разработать множество нокаут-моделей, а целевая проверка генов с использованием CRISPR / Cas9 является одним из наиболее широко используемых применений CRISPR / Cas93. Успех редактирования генов зависит от способности вводить инструменты CRISPR (направляющие РНК и нуклеазу Cas9) в модель клеток-мишеней, что может быть проблемой во многих труднопереводимых клетках, таких как мышечные клетки4. Эта проблема может быть преодолена с помощью вируса, обычно лентивируса, который имеет большое преимущество для эффективного преобразования многих типов клеток и доставки их трансгена. Но его основным недостатком является интеграция трансгена в геном клетки-хозяина, что приводит к потенциальному изменению генов, локализованных в месте интеграции, и к постоянной экспрессии трансгена, что в случае нуклеазы Cas9 приведет к разрушительным последствиям5. Умный раствор был предложен Мерьенн и его коллегами6, который состоит из введения в клетки направляющей РНК, нацеленной на сам ген Cas9, что приводит к инактивации Cas9. Адаптация этой стратегии представлена здесь в виде удобного и универсального протокола, позволяющего нокаутировать практически любой ген в труднотрансфектируемых клетках.
Целью представленного здесь протокола является индуцирование инактивации гена, представляющего интерес, в увековеченных мышечных клетках. Его можно использовать для нокаутирования любого гена, представляющего интерес, в различных типах увековеченных клеток. Протокол, описанный здесь, содержит шаги по разработке направляющих РНК и их клонированию в лентивирусные плазмиды, для производства инструментов CRISPR в лентивирусных векторах, для трансдукции клеток с различными лентивирусами и для клонирования клеток для получения однородной отредактированной клеточной линии.
Используя этот протокол, были разработаны увековеченные клетки скелетных мышц человека с делецией рецептора рианодина типа 1 (RyR1), важного кальциевого канала, участвующего во внутриклеточном высвобождении кальция и сокращении мышц7. Нокаут (KO) гена был подтвержден на уровне белка с использованием вестерн-блоттинга и на функциональном уровне с использованием кальциевой визуализации.
Важным шагом на пути к характеристике генов неизвестной функции, участвующих в патологиях, является разработка соответствующих клеточных моделей для изучения функции этих генов. Использование редактирования генов с использованием CRISPR / Cas9 является экспоненциально растущей областью …
The authors have nothing to disclose.
Эта работа финансировалась за счет грантов Французской ассоциации по борьбе с миопатиями (AFM-Téléthon) и Овернь-Роны Альпы Режион (AURA).
Anti-CACNA1S antibody | Sigma-Aldrich | HPA048892 | Primary antibody |
Blp I | NE BioLabs | R0585S | Restriction enzyme |
CalPhos Mammalian Transfection Kit | Takara | 631312 | Transfection kit |
Easy blot anti Mouse IgG | GeneTex | GTX221667-01 | HRP secondary antibody |
Easy blot anti Rabbit IgG | GeneTex | GTX221666 | HRP secondary antibody |
Fluo-4 direct | Molecular Probes | F10472 | Calcium imaging |
GAPDH(14C10) Rabbit mAb | Cell Signaling Technology | #2118 | Primary antibody |
HindIII | Fermentas | ER0501 | Restriction enzyme |
InFusion HD Precision Plus | Takara | 638920 | Ligation kit |
MasterMix Phusion High Fidelity with GC | ThermoFisher Scientific | F532L | Mix for PCR reaction with High fidelity Taq polymerase and dNTPs |
Myosin Heavy Chain antibody | DHSB | MF20 | Primary antibody |
NucleoBond Xtra Maxi EF | Macherey-Nagel | REF 740424 | Maxipreparation kit for purification of plasmids |
NucleoSpin Gel and PCR Clean-up | Macherey-Nagel | 740609 | DNA purification |
NucleoSpin Tissue | Macherey-Nagel | 740952 | Kit for DNA extraction from cell |
One Shot Stbl3 Chemically Competent E. coli | ThermoFisher Scientific | C737303 | Chemically competent cells |
Plasmid #87904 | Addgene | 87904 | Lentiviral plasmid encoding the SpCas9 (for LV-Cas9) |
Plasmid #87919 | Addgene | 87919 | Lentiviral backbone for insertion of cassette with guides (for LV-guide-target) |
Plasmid #12260 | Addgene | 12260 | Lentiviral plasmid encoding lentiviral packaging GAG POL |
Plasmid #8454 | Addgene | 8454 | Lentiviral plasmid encoding envelope protein for producing lentiviral and MuLV retroviral particles |
V5 Tag Monoclonal Antibody | Invitrogene | R96025 | Primary antibody |
XL10-Gold Ultracompetent Cells | Agilent | 200317 | Chemically competent cells |
Xma I | NE BioLabs | R0180S | Restriction enzyme |