Summary

用于动态界面共聚焦显微镜可视化的微量天体测量仪

Published: September 09, 2022
doi:

Summary

本手稿描述了微量血压计/共聚焦显微镜的设计和操作,以便在可视化界面形态的同时测量界面张力和表面膨胀流变学。这提供了在技术和生理学中重要的界面的结构 – 属性关系的实时构建。

Abstract

表面活性分子对流体 – 流体界面的吸附在自然界中无处不在。表征这些界面需要测量表面活性剂吸附速率,评估平衡表面张力作为块体表面活性剂浓度的函数,并关联表面张力如何随平衡后界面面积的变化而变化。使用荧光成像和高速共聚焦显微镜同时对界面进行可视化,可以直接评估结构 – 功能关系。在毛细管压力微量计(CPM)中,将半球形气泡固定在毛细管末端的1 mL液体储液器中。通过商业微流体流量控制器控制穿过气泡界面的毛细管压力,该控制器允许基于模型的压力、气泡曲率或基于拉普拉斯方程的气泡面积控制。与以往的Langmuir槽和吊坠落技术相比,测量和控制精度和响应时间大大提高;毛细管压力变化可以在几毫秒内应用和控制。气泡界面的动态响应通过第二个光学透镜可视化,因为气泡膨胀和收缩。气泡轮廓拟合到圆形轮廓,以确定气泡曲率半径 R,以及任何会使结果无效的圆度偏差。拉普拉斯方程用于确定界面的动态表面张力。平衡后,计算机控制的微流体泵可以施加小的压力振荡来振荡气泡半径(频率为0.001-100个周期/分钟),以确定膨胀模量系统的整体尺寸足够小,以至于微秒计适合高速共聚焦显微镜的透镜下,允许以亚微米横向分辨率定量跟踪荧光标记的化学物质。

Introduction

表面活性剂薄膜覆盖的空气-水界面在日常生活中无处不在。表面活性剂-水注入用于提高枯竭油田的采收率,并用作页岩气和石油的水力压裂解决方案。气液泡沫和液液乳液在许多工业和科学过程中作为润滑剂和清洁剂很常见,在食品中很常见。界面处的表面活性剂和蛋白质在包装、储存和给药过程中稳定抗体构象12345,眼睛中的泪膜稳定性678 和肺力学9101112131415.

表面活性剂或表面活性剂吸附到界面及其性质的研究有着悠久的历史,具有许多不同的实验技术16,1718,192021222324252627.最近的发展是毛细管压力微量血压计(CPM),它允许在更小的长度尺度上检查高度弯曲界面上的界面性质,同时使用的材料明显少于其他常用方法9232425。共聚焦荧光显微镜(CFM)可用于研究CPM 22中气水界面或Langmuir20,26272829处脂质和蛋白质的形态。在这里,CPM和CFM相结合,将形态现象与动态和平衡界面性质联系起来,以发展生物和技术界面的结构 – 功能关系。

在界面表面活性剂系统中有许多重要的参数可供CPM-CFM使用。在CPM中,将直径为30-200μm的气泡固定在玻璃毛细管的尖端。在CPM的早期版本中,气泡内部和外部之间的毛细管压差 通过 水柱和振荡注射泵930 控制;这里描述的新版本用更高精度的计算机控制微流体泵取代了这些。表面张力(γ) 通过 拉普拉斯方程ΔP = 2γ / R确定,该方程由泵ΔP设置的界面上的压降和对气泡曲率半径R的光学分析确定。在与含有可溶性表面活性剂的散装液体接触时产生新气泡后,界面的动态表面张力可以用10 ms的时间分辨率确定。表面活性剂的吸附动力学可以用经典的Ward-Tordai方程1031 来描述,以确定表面活性剂的基本性质,包括扩散率,表面覆盖率以及体积浓度与平衡表面张力之间的关系。一旦达到平衡的表面张力,界面面积就可以振荡以测量膨胀模量, Equation 1通过记录表面张力的变化,由气泡表面积的微小变化引起, A32。对于发展自己的内部结构(如缠结聚合物或蛋白质)的更复杂的界面,表面张力被更一般的表面应力433Equation 2所取代。

呼吸期间的肺稳定性可直接与在肺泡气液界面910处保持低表面张力和高扩张模量直接相关。所有肺内表面都衬有连续的,微米厚的上皮衬里液膜,以维持组织水合作用34。这种上皮衬里液主要是水,含有盐和各种其他蛋白质,酶,糖和肺表面活性剂。与任何弯曲的液蒸气界面一样,毛细管压力随着肺泡(或气泡)内部压力的升高而诱导。然而,如果肺内各处的表面张力恒定,拉普拉斯方程ΔP = 2γ / R表明,较小的肺泡相对于较大的肺泡具有更高的内部压力,迫使较小肺泡的气体含量流向较大,压力较低的肺泡。这被称为“拉普拉斯不稳定性”935。最终结果是,最小的肺泡会塌陷并充满液体,变得难以再充气,导致部分肺塌陷,其他部分会过度充气,这两者都是急性呼吸窘迫综合征(ARDS)的典型症状。然而,在功能正常的肺中,随着肺泡界面区域的空气 – 上皮流体界面在呼吸过程中扩张和收缩,表面张力动态变化。如果 Equation 3,或 Equation 4,拉普拉斯压力随着半径的减小而减小,并随着半径的增加而增加,以消除拉普拉斯的不稳定性,从而稳定肺9。因此, Equation 5以及它如何依赖于频率、单层形态和组成,以及肺泡液组成可能对肺的稳定性至关重要。CPM-CFM还首次证明了界面曲率对表面活性剂吸附25、单层形貌22 和膨胀模量9的影响。CPM中储液槽体积小(~1 mL)允许快速引入,去除或交换液相,并最大限度地减少所需数量的昂贵蛋白质或表面活性剂10

CPM-CFM图像中的对比度是由于在界面1627处分布的荧光标记的脂质或蛋白质的一小部分。二维表面活性剂单层通常表现出横向相分离作为表面张力或表面压力的函数, Equation 6 π是清洁的流体 – 流体界面γ0和表面活性剂覆盖的界面的表面张力之间的差异,π γ。在低表面压力下,脂质单层处于液体状无组织状态;这被称为液体膨胀(LE)相。随着表面压力的增加和每个脂质分子的面积减小,脂质彼此定向并且可以经历一阶相变,以长程有序液体凝结(LC)相162027。LE和LC相可以在各种表面压力下共存,并且可以可视化,因为荧光标记的脂质从LC相中排除并分离到LE相。因此,当使用CFM16成像时,LE相位是明亮的,LC相位是暗的。

本手稿的目的是描述构建和操作组合共聚焦显微镜微量血压计所需的步骤。这将允许读者在微米级的空气/水或油/水界面上同时进行吸附研究,测量表面张力,流变行为并检查界面形态。这包括讨论如何拉动、切割和疏水所需的毛细血管,使用压力、曲率和表面积控制模式的说明,以及将不溶性表面活性剂的界面转移到微量血压计曲面界面。

Protocol

1. 毛细管的制备 将毛细管放入毛细管拉拔器中,并运行所需的拉拔程序,以制造两个锥形毛细管,其尖端的外径(OD)约为1μm。注意:拉动前毛细管的外径必须是指定适合微型血压计单元中毛细管支架的外径。毛细管的内径(ID)可以变化,但会影响拉动后毛细管的临界半径。选择拉拔程序,以便所得的锥度最初迅速减小毛细管OD和ID,然后达到所需毛细管OD和ID附近的半径?…

Representative Results

测量误差的主要来源来自毛细管,这些毛细管在切割过程(图5A,B)或涂层过程(图5D)中具有缺陷。这两种类型的缺陷都会导致光学图像分析系统在确定气泡形状和尺寸时出现错误,从而导致表面张力值不准确。在将毛细管插入CPM之前,在将毛细管拉出并涂覆在光学显微镜下后,仔细检查每个毛细管非常重要。必须丢弃毛细管,但可以对…

Discussion

CPM/CFM组合是检查界面动力学、平衡和形态的强大工具。此协议描述了使用 CPM/CFM 获取数据所需的步骤。

图2 显示了带有毛细管、溶剂和热交换通道的电池设计。溶剂交换的入口应位于电池的底部,而出口应位于顶部,以使电池在交换过程中不会溢出。在实践中,同一蠕动泵的入口和出口流量可能略有不同。这种电池设计的一个常见问题是从电池泄漏。?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

所有共聚焦显微镜图像均使用尼康A1RHD多光子直立共聚焦显微镜获得。我们感谢明尼苏达大学成像中心的支持人员,特别是吉列尔莫·马克斯的指导和帮助。这项工作得到了NIH格兰特HL51177的支持。SI得到了露丝·柯尔施泰因NRSA机构研究培训补助金F32 HL151128的支持。

Materials

1.5 O.D. Tygon tubing Fischer Scientific Tubing
A1RHD Multiphoton upright confocal microscope Nikon Confocal Microscope
Acid Cleaning Solution Sulfuric acid and Alnochromix diluted with water 50% by volume, wait until clear befor diluting
Alnochromix Alconox 2510 Mixed with sulfuric acid to package instructionand diluted to make acid cleaning solution
Ceramic glass cutter Sutter Instruments
Chloroform Sigma-Aldrich 650471 HPLC Plus
Curosurf Chiesi  Lung Surfactant
Di Water 18.5 MΩ – cm
Ethanol any 200 proof used for hydrophobization, denatured used for cleaning
Fiber-Lite Model 190 fiber optic illuminator Dolan-Jenner Industries Inc. 281900100 Light source; other light sources should work as well
Flow EZ F69 mbar w/Link Module Fluigent LU-FEZ-0069 Microfluidic Pump
Fluigent SDK VIs Fluigent Required for CPM virtual Interface
Fluoroelastomer gaskets Machined from 1 mm thick Viton sheet, See figure 3
Gas filter Norgren F07-100-A3TG Put between microfluidic pump and pressure regulator
Gas regulator Norgren 10R0400R Steps down pressure from sorce to range of pump, connected to gas filter range 2-120 psi
Glass Capilary Sutter Instruments B150-86-10 Borosilicate glass O.D. 1.5 mm I.D. 0.86 mm
Glass Slide any 75 mm x 25 mm
Glass Syringe Hamilton 84878 25 μL glass syringe
Hydrophobizing Agent Sigma-Aldrich 667420 1H,1H,2H,2H-Perfluoro-octyltriethoxysilane 98%, other hydrophobic triethoxysilane can be substituted
Insoluble surfactant Avanti 850355C-200mg 16:0 DPPC in chloroform
LabVIEW Software National Instruments 2017
Longpass Filter ThorLabs FEL0650 650 nm Longpass filter, wavelength must remove excitation lazer frequence
Lyso-PC Avanti 855675P 16:0 Lyso PC 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine
Masterflex L/S variable speed analog consol pump system w/  Easy-Load II pump head Masterflex HV-77916-20 Peristaltic Pump
MATLAB Mathworks R2019
Micropipette Puller P-1000 Sutter Instruments Capillary Puller
Microtensiometer Cell and Holder Cell machined from PEEK, holder machined from aluminum, See Figure 3 and 4
Microtensiometer Objective Nikon Fluor 20x/0.50W DIC M/N2 ∞/0 WD 2.0 mm
NI Vision Development Module National Instruments Required for CPM virtual Interface
PEEK finger tight fittings IDEX F-120x 10-32 Coned Ports
PEEK plug IDEX P-551 10-31 Coned Ports
pippette tips Eppendorf 22492225 100 μL – 1000 μL, Autoclaved
Plastic Forceps Thermo Scientific 6320-0010
Plastic Syringe Fischer Scientific 14-955-459 10 mL
Plumbing parts Fischer Scientific 3-way valves and other plumbing parts to connect tubing.
Research Plus 1-channel 100 μL–1000 μL Eppendorf 3123000063 Micro pipetter
Sulfuric Acid any Used for acid cleaning solution
T Plan SLWD 20x/0.30 OFN25 WD 30 mm Nikon Confocal Microscope Objective
Texas Red DHPE triethylammonim salt Thermo Fischer Scientific 1395MP Fluorophore
Vaccum Pump Gast DOA-P704-AA

References

  1. Freer, E. M., Yim, K. S., Fuller, G. G., Radke, C. J. Interfacial rheology of globular and flexible proteins at the hexadecane/water interface: Comparison of shear and dilatation deformation. Journal of Physical Chemistry B. 108 (12), 3835-3844 (2004).
  2. Freer, E. M., Yim, K. S., Fuller, G. G., Radke, C. J. Shear and dilatational relaxation mechanisms of globular and flexible proteins at the hexadecane/water interface. Langmuir. 20 (23), 10159-10167 (2004).
  3. Kannan, A., Shieh, I. C., Fuller, G. G. Linking aggregation and interfacial properties in monoclonal antibody-surfactant formulations. Journal of Colloid and Interface Science. 550, 128-138 (2019).
  4. Kannan, A., Shieh, I. C., Leiske, D. L., Fuller, G. G. Monoclonal antibody interfaces: Dilatation mechanics and bubble coalescence. Langmuir. 34 (2), 630-638 (2018).
  5. Li, J. J., et al. Interfacial stress in the development of biologics: Fundamental understanding, current practice, and future perspective. The AAPS Journal. 21 (3), 44 (2019).
  6. Bhamla, M. S., Giacomin, C. E., Balemans, C., Fuller, G. G. Influence of interfacial rheology on drainage from curved surfaces. Soft Matter. 10 (36), 6917-6925 (2014).
  7. Fuller, G. G., Vermant, J. Complex fluid-fluid interfaces: Rheology and structure. Annual Review of Chemical and Biomolecular Engineering. 3, 519-543 (2012).
  8. Rosenfeld, L., et al. Structural and rheological properties of meibomian lipid. Investigative Ophthalmology & Visual Science. 54 (4), 2720-2732 (2013).
  9. Barman, S., Davidson, M. L., Walker, L. M., Anna, S. L., Zasadzinski, J. A. Inflammation product effects on dilatational mechanics can trigger the Laplace instability and acute respiratory distress syndrome. Soft Matter. 16 (29), 6890-6901 (2020).
  10. Barman, S., et al., Ramachadran, A., et al. . Recent Advances in Rheology: Theory, Biorheology, Suspension and Interfacial Rheology. , (2022).
  11. Alonso, C., Zasadzinski, J. A. A brief review of the relationship between monolayer viscosity, phase behavior, surface pressure and temperature using a simple monolayer viscometer. The Journal of Physical Chemistry B. 110 (44), 22185-22191 (2006).
  12. Alonso, C., et al. More than a monolayer: Relating lung surfactant structure and mechanics to composition. Biophysical Journal. 87 (6), 4188-4202 (2004).
  13. Alonso, C., Bringezu, F., Brezesinski, G., Waring, A. J., Zasadzinski, J. A. Modifying calf lung surfactant by hexadecanol. Langmuir. 21 (3), 1028-1035 (2005).
  14. Alonso, C., Waring, A. J., Zasadzinski, J. A. Keeping lung surfactant where it belongs: Protein regulation of two-dimensional viscosity. Biophysical Journal. 89 (1), 266-273 (2005).
  15. Zasadzinski, J. A., et al. Inhibition of pulmonary surfactant adsorption by serum and the mechanisms of reversal by hydrophilic polymers: Theory. Biophysical Journal. 89 (3), 1621-1629 (2005).
  16. McConnell, H. M. Structures and transitions in lipid monolayers at the air-water-interface. Annual Reviews of Physical Chemistry. 42, 171-195 (1991).
  17. McConnell, H. M., Moy, V. T. Shapes of finite two-dimensional lipid domains. Journal of Physical Chemistry. 92 (15), 4520-4525 (1988).
  18. Zasadzinski, J. A., Stenger, P., Shieh, I., Dhar, P. Overcoming rapid inactivation of lung surfactant: analogies between competitive adsorption and colloid stability. Biochemica et Biophysica Acta. 1798 (4), 801-828 (2010).
  19. Zasadzinski, J. A., Nag, K., et al. . Surfactant Progress. , (2008).
  20. Valtierrez-Gaytan, C., et al. Spontaneous evolution of equilibrium morphology in phospholipid-cholesterol monolayers. Science Advances. 8 (14), (2022).
  21. Williams, I., Zasadzinski, J. A., Squires, T. M. Interfacial rheology and direct imaging reveal domain-templated network formation in phospholipid monolayers penetrated by fibrinogen. Soft Matter. 15 (44), 9076-9084 (2019).
  22. Sachan, A. K., Zasadzinski, J. A. Interfacial curvature effects on the monolayer morphology and dynamics of a clinical lung surfactant. Proceedings of the National Academy of Sciences of the United States of America. 115 (2), 134-143 (2018).
  23. Alvarez, N. J., Anna, S. L., Saigal, T., Tilton, R. D., Walker, L. M. Intefacial dynamics and rheology of polymer grafter nanoparticles at air-water and xylene-water interfaces. Langmuir. 28 (21), 8052-8063 (2012).
  24. Alvarez, N. J., Vogus, D. R., Walker, L. M., Anna, S. L. Using bulk convection in a microtensiometer to approach kinetic-limited surfactant dynamics at fluid-fluid interfaces. Journal of Colloid and Interface Science. 372 (1), 183-191 (2012).
  25. Alvarez, N. J., Walker, L. M., Anna, S. L. Diffusion-limited adsorption to a spherical geometry: The impact of curvature and competitive time scales. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics. 82, 011604 (2010).
  26. Shieh, I., Waring, A. J., Zasadzinski, J. A. Visualizing the analogy between competitive adsorption and colloid stability to restore lung surfactant function. Biophysical Journal. 102 (4), 777-786 (2012).
  27. Shieh, I., Zasadzinski, J. A. Visualizing monolayers with a water-soluble fluorophore to quantify adsorption, desorption and the double-layer. Proceedings of the National Academy of Sciences of the United States of America. 112 (8), 826-835 (2015).
  28. Lipp, M. M., Lee, K. Y. C., Takamoto, D. Y., Zasadzinski, J. A., Waring, A. J. Coexistence of buckled and flat monolayers. Physical Review Letters. 81, 1650-1653 (1998).
  29. Lipp, M. M., Lee, K. Y. C., Waring, A., Zasadzinski, J. A. Fluorescence, polarized fluorescence, and Brewster angle microscopy of palmitic acid and lung surfactant protein B monolayers. Biophysical Journal. 72 (6), 2783-2804 (1997).
  30. Alvarez, N. J., Walker, L. M., Anna, S. L. A microtensiometer to probe the effect of radius of curvature on surfactant transport to a spherical interface. Langmuir. 26 (16), 13310-13319 (2010).
  31. Ward, A. F. H., Tordai, L. Time dependents of boundary tensions of solutions. 1. The role of diffusion in time-effects. Journal of Chemical Physics. 14, 453-461 (1946).
  32. Lucassen, J., Vanden Tempel, M. Dynamic measurements of dilatational properties of a liquid interface. Chemical Engineering Science. 27 (6), 1283-1291 (1972).
  33. Lin, G. L., et al. Interfacial dilatational deformation accelerates particle formation in monoclonal antibody solutions. Soft Matter. 12 (14), 3293-3302 (2016).
  34. Bastacky, J., et al. Alveolar lining layer is thin and continuous: low temperature scanning electron microscopy of rat lung. Journal of Applied Physiology. 79 (5), 1615-1628 (1995).
  35. Adamson, A. W., Gast, A. P. . Physical Chemistry of Surfaces, Sixth ed. , 784 (1997).
  36. del Rio, O. I., Kwok, D. Y., Wu, R., Alvarez, J. M., Neumann, A. W. Contact angle measurements by axisymmetric drop shape analysis and an automated polynomial fit program. Colloids and Surfaces A Physicochemical and Engineering Aspects. 143 (2-3), 197-210 (1998).
  37. Kanthe, A., et al. No ordinary proteins: Adsorption and molecular orientation of monoclonal antibodies. Science Advances. 7 (5), 14 (2021).
  38. Manikantan, H., Squires, T. M. Surfactant dynamics: hidden variables controlling fluid flows. Journal of Fluid Mechanics. 892, 115 (2020).
  39. Narayan, S., et al. Dilatational rheology of water-in-diesel fuel interfaces: effect of surfactant concentration and bulk-to-interface exchange. Soft Matter. 17 (18), 4751-4765 (2021).
  40. Meng, G. N., Paulose, J., Nelson, D. R., Manoharan, V. N. Elastic instability of a crystal growing on a curved surface. Science. 343 (6171), 634-637 (2014).
  41. Kotula, A. P., Anna, S. L. Insoluble layer deposition and dilatational rheology at a microscale spherical cap interface. Soft Matter. 12 (33), 7038-7055 (2016).
  42. Lipp, M. M., Lee, K. Y. C., Zasadzinski, J. A., Waring, A. J. Phase and morphology changes in lipid monolayers induced by SP-B protein and its amino-terminal peptide. Science. 273 (5279), 1196-1199 (1996).
  43. Pocivavsek, L., et al. Stress and fold localization in thin elastic membranes. Science. 320 (5878), 912-916 (2008).
  44. Pocivavsek, L., et al. Lateral stress relaxation and collapse in lipid monolayers. Soft Matter. 4 (10), 2019-2029 (2008).
  45. Kim, K., Choi, S. Q., Squires, T. M., Zasadzinski, J. A. Cholesterol nanodomains: their effect on monolayer morphology and dynamics. Proceedings of the National Academy of Sciences of the United States of America. 110 (33), 3054-3060 (2013).
  46. Kim, K., Choi, S. Q., Zasadzinski, J. A., Squires, T. M. Interfacial microrheology of DPPC monolayers at the air-water interface. Soft Matter. 7 (17), 7782-7789 (2011).
  47. Kim, K., Choi, S. Q., Zasadzinski, J. A., Squires, T. M. Nonlinear chiral rheology of phospholipid monolayers. Soft Matter. 14 (13), 2476-2483 (2018).
  48. Kotula, A. P., Anna, S. L. Regular perturbation analysis of small amplitude oscillatory dilatation of an interface in a capillary pressure tensiometer. Journal of Rheology. 59, 85-117 (2015).

Play Video

Citer Cet Article
Iasella, S. V., Barman, S., Ciutara, C., Huang, B., Davidson, M. L., Zasadzinski, J. A. Microtensiometer for Confocal Microscopy Visualization of Dynamic Interfaces. J. Vis. Exp. (187), e64110, doi:10.3791/64110 (2022).

View Video