L’impianto cocleare robotico è una procedura per l’accesso minimamente invasivo all’orecchio interno. Rispetto alla chirurgia convenzionale, l’impianto cocleare robotico comporta ulteriori passaggi che devono essere eseguiti in sala operatoria. In questo articolo diamo una descrizione della procedura ed evidenziamo gli aspetti importanti dell’impianto cocleare robotico.
I sistemi assistiti da robot offrono un grande potenziale per un impianto cocleare più delicato e preciso. In questo articolo, forniamo una panoramica completa del flusso di lavoro clinico per l’impianto cocleare robotico utilizzando un sistema robotico sviluppato appositamente per un accesso cocleare diretto minimamente invasivo. Il flusso di lavoro clinico coinvolge esperti di varie discipline e richiede una formazione per garantire una procedura fluida e sicura. Il protocollo riassume brevemente la storia dell’impianto cocleare robotico. La sequenza clinica è spiegata in dettaglio, iniziando con la valutazione dell’idoneità del paziente e la preparazione chirurgica, la pianificazione preoperatoria con lo speciale software di pianificazione, la perforazione dell’accesso all’orecchio medio, l’imaging intraoperatorio per confermare la traiettoria, la fresatura dell’accesso all’orecchio interno, l’inserimento dell’array di elettrodi e la gestione dell’impianto. Vengono discussi i passaggi che richiedono particolare attenzione. Ad esempio, viene presentato l’esito postoperatorio dell’impianto cocleare robotico in un paziente con otosclerosi avanzata. Infine, la procedura è discussa nel contesto dell’esperienza degli autori.
Un impianto cocleare (CI) è il trattamento standard per l’ipoacusia neurosensoriale da grave a profonda1. La procedura chirurgica per l’impianto cocleare mira a inserire in modo atraumatico l’array di elettrodi dell’impianto cocleare nella coclea. Per l’impianto, i chirurghi devono fornire l’accesso dalla superficie dell’osso temporale alla coclea. Nelle procedure convenzionali, questo accesso viene creato rimuovendo porzioni dell’osso mastoideo attraverso una mastoidectomia e una timpanatomia posteriore2.
L’impianto cocleare assistito da robot mira a eseguire un accesso minimamente invasivo attraverso un piccolo tunnel all’orecchio interno per l’inserimento di array di elettrodi. Ad oggi, diversi sistemi per l’impianto cocleare assistito da robot sono in fase di sviluppo o già disponibili sul mercato. Uno di questi sistemi fornisce la perforazione robotica della mastoideo e l’inserimento dell’elettrodo ed è stato recentemente valutato nei pazienti3. Un altro dispositivo è un sistema di guida specifico per il paziente per la perforazione di gallerie e l’inserimento di elettrodi4. Due sistemi che non prevedono il tunnel di accesso all’orecchio interno ma piuttosto l’allineamento e l’inserimento motorizzato di array di elettrodi hanno recentemente ricevuto l’approvazione dei dispositivi medici in Europa e negli Stati Uniti 5,6. La prima implementazione clinica di una procedura a tunnel minimamente invasiva utilizzando un quadro guida stereotassico è stata eseguita da Labadie et al.7. Il primo sistema robotico e software di pianificazione applicato in casi clinici è stato sviluppato attraverso la collaborazione tra il Centro ARTORG per l’ingegneria biomedica dell’Università di Berna e il Dipartimento di Otorinolaringoiatria dell’Ospedale universitario di Berna in Svizzera 8,9,10,11. Il software e il sistema di pianificazione sono stati successivamente commercializzati da una società spin-off.
Qui, gli autori presentano il protocollo coinvolto nell’esecuzione dell’impianto cocleare robotico con un sistema di impianto cocleare robotico dedicato. Vengono trattati e discussi gli aspetti della selezione dei pazienti idonei, la pianificazione preoperatoria del tunnel di accesso e la procedura chirurgica completa. Lo scopo di questo articolo è presentare una panoramica della procedura e condividere l’esperienza degli autori con il sistema.
Qui viene presentata una panoramica delle fasi coinvolte nell’impianto cocleare robotico. Una parte importante è la selezione dei candidati idonei per la procedura. Per garantire che i margini di sicurezza durante l’intervento chirurgico possano essere mantenuti, è necessario eseguire un attento screening dei candidati per garantire l’idoneità alla procedura. La distanza tra la traiettoria virtualmente pianificata e il nervo facciale dovrebbe essere di almeno 0,4 mm. Inoltre, deve essere disponibile una distanza di almeno 0,3 mm dalla chorda tympani. Per fornire maggiore flessibilità nella pianificazione della traiettoria dopo l’imaging preoperatorio il giorno dell’intervento, è possibile prendere in considerazione limiti ancora maggiori per la selezione del paziente.
Poiché il sistema robotico si basa sulle viti di riferimento fiduciali per trasferire il piano al paziente, sono di fondamentale importanza per una procedura sicura. Il chirurgo deve selezionare attentamente le posizioni delle viti fiduciali per assicurarsi che sia disponibile spazio sufficiente per la perforazione della traiettoria. Una disposizione lineare di tre viti dovrebbe essere evitata. Inoltre, è necessario assicurarsi che la vite per il marcatore del paziente sia posizionata in modo tale che il marcatore rimanga visibile durante tutta la procedura. Le istruzioni per l’uso del sistema robotico forniscono linee guida dettagliate per il posizionamento delle viti. Quando si posizionano le viti, è necessario assicurarsi che i fori siano preforati perpendicolarmente alla superficie dell’osso mastoideo. Il fissaggio ermetico delle viti assicura che non si verifichino movimenti durante la procedura.
Per l’imaging preoperatorio, i pazienti devono essere scansionati in apnea, poiché il movimento respiratorio del paziente può causare artefatti di movimento che potrebbero non essere immediatamente identificabili nelle immagini, ma in seguito durante il processo di registrazione possono causare errori che impediscono l’avvio della procedura. È necessario assicurarsi che la persona che esegue la pianificazione preoperatoria abbia ricevuto una formazione approfondita per identificare ed etichettare con sicurezza le strutture anatomiche. In particolare, è necessario allenare il decorso del nervo facciale, la corda timpanica e la selezione del bersaglio alla coclea (di solito il centro della membrana della finestra rotonda). Per la generazione del nervo facciale, dovrebbe essere presa in considerazione un’ulteriore sicurezza attraverso l’eccessiva segmentazione del nervo. Nel caso in cui nessuna modalità di imaging sia disponibile direttamente in sala operatoria o nessun sistema di imaging mobile possa essere trasportato in sala operatoria, il paziente deve essere trasferito al reparto neuroradiologico per l’imaging. È necessario considerare il tempo aggiuntivo di trasferimento del paziente. La pianificazione preoperatoria può essere eseguita in parallelo con il trasferimento e la preparazione del paziente per risparmiare tempo.
Il team dovrebbe addestrare ampiamente il posizionamento della testa nel poggiatesta per garantire che il marcatore del paziente e le viti siano visibili al sistema nelle fasi successive. Una posizione errata della testa può comportare l’invisibilità dei marcatori o una cinematica non fattibile del braccio robotico. In tutte le fasi durante l’impianto cocleare robotico, è necessario assicurarsi che tutte le viti siano saldamente fissate, che il marcatore del paziente sia fissato rigidamente e che il manipolo del robot sia fisso.
Per l’imaging intraoperatorio utilizzando dispositivi di imaging mobili (ad esempio, TC a fascio conico mobile), è necessario garantire un spazio sufficiente della testa del paziente e del poggiatesta con il drappeggio sterile. Gli artefatti di movimento causati dallo scanner che tocca il drappo sterile potrebbero peggiorare la qualità dell’immagine intraoperatoria e impedire il processo decisionale sulla sicurezza della traiettoria perforata necessaria per l’inizio della perforazione.
In un caso ottimale, la membrana della finestra rotonda viene preservata dopo l’accesso robotico dell’orecchio interno, sigillando l’orecchio interno dalla polvere ossea e dal sangue che potrebbero essere introdotti dai passaggi consecutivi coinvolti nella gestione dell’impianto. Poiché le viti fiduciali e il marcatore di riferimento del paziente sono necessari per l’accesso all’orecchio interno, non è consigliabile preparare il letto implantare prima dell’accesso all’orecchio interno per garantire spazio sufficiente per il posizionamento della vite. Nel caso in cui la membrana della finestra rotonda non sia intatta dopo l’accesso all’orecchio interno, la finestra rotonda potrebbe essere temporaneamente coperta come misura protettiva fino a quando non viene eseguito l’inserimento dell’array di elettrodi.
Dopo aver stabilito l’accesso all’orecchio interno, il chirurgo può utilizzare diverse tecniche per visualizzare l’accesso. È possibile l’ispezione microscopica attraverso un lembo timpanomeatale o un’ispezione endoscopica diretta. Tuttavia, per l’inserimento successivo dell’array di elettrodi, si consiglia di eseguire un lembo timpanomeatale per fornire accesso diretto all’array di elettrodi, se necessario13. Il cavo dell’array di elettrodi può essere marcato prima dell’inserimento per indicare inserimenti completi sulla superficie dell’osso mastoideo. Si consiglia inoltre di utilizzare il tubo guida di inserimento durante l’inserimento per evitare il contatto con sangue e polvere ossea e per vincolare l’array di elettrodi alla traiettoria di inserimento14.
La procedura presentata applica la robotica autonoma nel campo della microchirurgia otologica. I potenziali vantaggi della procedura includono un accesso riproducibile e minimamente invasivo alla coclea e, in definitiva, un inserimento mirato e accurato di elettrodi, che potrebbe espandere il pool di pazienti con IC in futuro. Le attuali limitazioni del sistema sono i costi aggiuntivi associati per il materiale e il personale addestrato, la maggiore durata chirurgica e l’inserimento dell’elettrodo ancora eseguito manualmente. Attualmente, l’impianto cocleare robotico richiede più tempo (circa 4 ore) rispetto all’impianto cocleare convenzionale (circa 1,5 ore). Pertanto, anche la condizione del paziente deve essere considerata per l’ammissibilità.
The authors have nothing to disclose.
Gli autori ringraziano Gianni Pauciello, Dipartimento di Otorinolaringoiatria, Chirurgia della testa e del collo, Inselspital, Ospedale universitario di Berna, per la produzione video e la fotografia. Ringraziamo anche il Dr. Stefan Henle e il team del Dipartimento di Anestesiologia e Medicina del Dolore, Inselspital, Ospedale universitario di Berna e il team del Dipartimento di Neuroradiologia Diagnostica e Interventistica, Inselspital, Ospedale Universitario di Berna, Berna, Svizzera.
Cochlear implant | MED-EL, Austria | ||
HEARO Consumable Set | CAScination, Switzerland | REF 50176 | CE-labelled |
HEARO Instrument Set | CAScination, Switzerland | REF 30123 | CE-labelled |
HEARO System Components | CAScination, Switzerland | CE-labelled | |
Mobile cone beam CT scanner | XORAN Xcat | if not availalbe, imaging needs to be performed in the neuroradiological department | |
OTOPLAN | CAScination, Switzerland | REF 20125 | CE-labelled |
Planning laptop | Any computer with enough performance is suitable, software OTOPLAN installed | ||
USB Stick | A surgical plan that was created with OTOPLAN is transferred to the HEARO system via a USB flash drive. |