Describimos un protocolo para el aislamiento de células madre mesenquimales del tejido del cordón umbilical humano y su diferenciación en el linaje del músculo esquelético.
La exploración del potencial terapéutico de las células madre mesenquimales depende de la facilidad de aislamiento, la potencia hacia la diferenciación y la confiabilidad y robustez de la fuente. Describimos aquí un protocolo gradual para el aislamiento de células madre mesenquimales del tejido del cordón umbilical humano (uMSC), su inmunofenotipado y la propagación de dichos cultivos en varios pasajes. En este procedimiento, la viabilidad de las uMSCs es alta porque no hay digestión enzimática. Además, la eliminación de los vasos sanguíneos, incluidas las arterias del cordón umbilical y la vena, garantiza que no haya contaminación de las células de origen endotelial. Usando citometría de flujo, las uMSCs tras el aislamiento son CD45−CD34−, lo que indica una ausencia de células del linaje hematopoyético. Es importante destacar que expresan marcadores de superficie clave, CD105, CD90 y CD73. Tras el establecimiento de cultivos, este artículo describe un método eficiente para inducir la diferenciación en estas uMSC en el linaje del músculo esquelético. Un análisis detallado de la progresión miogénica en uMSCs diferenciadas revela que las uMSCs expresan Pax7, un marcador para progenitores miogénicos en las etapas iniciales de diferenciación, seguido de la expresión de MyoD y Myf5, y, finalmente, un marcador de diferenciación terminal, la cadena pesada de miosina (MyHC).
Se ha acreditado que el cordón umbilical humano posee un reservorio robusto de células madre mesenquimales, que actualmente se están explorando para terapias regenerativas debido a sus robustas tasas de proliferación y diferenciación, propiedades inmunomoduladoras y capacidad para generar células a partir de las tres capas germinales1. El tejido del cordón umbilical consta de múltiples compartimentos como la sangre del cordón umbilical, el subendotelio de la vena umbilical y la gelatina de Wharton (WJ), que en sí misma abarca tres regiones indistintas: la zona perivascular, la zona intervascular y el subamnio o el revestimiento del cordón umbilical (CL)2. Si bien las uMSC pueden aislarse de todas estas regiones diferentes y expresar ampliamente los marcadores clave de MSC, no hay claridad sobre si estos compartimentos contienen la misma población de uMSC o muestran diferencias en sus potencias de diferenciación3. Por lo tanto, los protocolos para el aislamiento de uMSC requieren una mayor precisión en su modo y región de aislamiento, la caracterización robusta de los potenciales de diferenciación y, finalmente, un análisis comparativo de diferentes compartimentos del cordón.
En este contexto, pocos estudios han demostrado diferencias en los potenciales proliferativos y diferenciativos de uMSC entre las diferentes partes del cordón. De estos, los análisis comparativos entre uMSCs aislados de las regiones CL y WJ revelaron un mayor potencial proliferativo en uMSCs derivados de CL 3,4. En un estudio separado, las uMSC derivadas de WJ tuvieron un mejor desempeño en los ensayos de proliferación en comparación con las células perivasculares (HUCPV)5. Al examinar las diferencias entre las uMSC derivadas de la sangre del cordón umbilical y las uMSC derivadas del tejido del cordón umbilical desprovistas de contaminación vascular, se informó la expresión diferencial de los marcadores clave de MSC entre los dos compartimentos, así como el aumento de las tasas de proliferación en las uMSC derivadas del tejido del cordón umbilical6.
De los varios estudios que examinan los potenciales de diferenciación de las uMSC principalmente en tejidos del linaje mesodermo, como los linajes osteogénicos, adipogénicos y condrogénicos, muy pocos han proporcionado protocolos detallados para la diferenciación miogénica y la caracterización posterior, así como análisis comparativos entre varios compartimentos del cordón umbilical. En este contexto, hemos desarrollado un protocolo robusto de diferenciación muscular y hemos observado que las uMSC derivadas del tejido del cordón umbilical muestran capacidades de diferenciación miogénica superiores en comparación con la sangre del cordón umbilical6. Aquí, se detalla un protocolo paso a paso para el aislamiento de uMSC de todo el tejido del cordón umbilical desprovisto de células asociadas con la vasculatura, su caracterización y su diferenciación en el linaje miogénico.
Pasos críticos
Un paso crítico en este protocolo es la recolección de tejido en condiciones asépticas, desde el momento de la entrega hasta el mantenimiento de cultivos estériles, durante toda la propagación. Durante la recolección del cordón, es esencial que el cordón no toque ninguna superficie no esterilizada y se frote externamente con etanol al 70% antes de la recolección en tubos que contengan PBS suplementado con antibióticos. Es importante limitar el tiempo entre la recolección del…
The authors have nothing to disclose.
Agradecemos al Sr. Ojas Tikoo por su ayuda con la filmación y producción de video. También reconocemos la ayuda recibida del personal de GARBH-Ini (Grupo Interdisciplinario sobre Investigación Avanzada y Resultado del Nacimiento-DBT India), enfermeras y oficiales superiores de investigación en el Hospital Civil Gurugram y el Dr. Pallavi Kshetrapal por su ayuda con la logística. Este trabajo fue apoyado por subvenciones otorgadas a Suchitra Gopinath del Departamento de Biotecnología, India (BT/09/IYBA/2015; BT/PR29599/PFN/20/1393/2018).
4',6-diamidino-2-phenylindole (DAPI) | Thermo Fisher Scientific | D1306 | |
Amphotericin B | Sigma Aldrich | A2411 | |
Antibiotic solution 100x Liquid, endotoxin tested (10,000 U Penicillin and 10 mg Streptomycin/mL in 0.9% normal saline) | HiMedia | A001A-50mL | |
Anti-GAPDH antibody | Sigma Aldrich | G8795 | |
Anti-MyHC antibody (My32) | Novus Biologicals | NBP2-50401AF647 | |
Anti-MyoD antibody (5.8A) | Novus Biologicals | NB100-56511 | |
Anti-Myogenin antibody (Clone F5D) | Novus Biologicals | NBP2-34616AF594 | |
Anti-Pax7 antibody | DSHB | DSHB-C1-576 | |
APC Mouse anti-human CD90 clone 5E10 | BD Biosciences | 559869 | |
Collagen Type 1 | Merck | C8919 | |
D (+) Glucose | Sigma Aldrich | G7021 | |
Dexamethasone | SIGMA | D4902 | |
FACSCanto II or FACSAria III | BD Biosciences | ||
Fetal Bovine Serum, qualified Brazil | GIBCO | 10270106 | not to be heat-inactivated |
FITC Mouse anti-human CD106 clone 51-10C9 | BD Biosciences | 551146 | |
FITC Mouse anti-human CD14 clone M5E2 | BD Biosciences | 557153 | |
FITC Mouse anti-human CD31 clone WM59 | BD Biosciences | 557508 | |
FITC Mouse anti-human CD34 clone 581 | BD Biosciences | 555821 | |
FITC Mouse anti-human CD45 clone HI30 | BD Biosciences | 555482 | |
FITC Mouse anti-human CD49D clone 9F10 | BD Biosciences | 560840 | |
FITC Mouse anti-human CD90 clone 5E10 | BD Biosciences | 555595 | |
FITC Mouse anti-human HLA-A,B,C clone G46-2.6 | BD Biosciences | 557348 | |
FITC Mouse anti-human IgG clone G18-145 | BD Biosciences | 555786 | |
FlowJo software | BD Biosciences | ||
Gentamicin | Sigma Aldrich | G1264 | |
Horse serum | HiMedia | RM1239 | |
Hydrocortisone | Merck | H4001 | |
Laminin | Merck | L2020 | |
MEM Alpha Modification without L-glutamine, ribo- and deoxyribonucleosides | Hyclone | SH30568.FS | Basal medium for uMSCs |
PE Mouse anti-human CD105 clone 266 | BD Biosciences | 560839 | |
PE Mouse anti-human CD44 clone 515 | BD Biosciences | 550989 | |
PE Mouse anti-human CD49E clone llA1 | BD Biosciences | 555617 | |
PE Mouse anti-human IgG clone G18-145 | BD Biosciences | 555787 | |
PE-Cy7 Mouse anti-human CD73 CLONE AD2 | BD Biosciences | 561258 | |
Phosphate buffered saline (PBS), pH=7.4 | HiMedia | M1866 | |
Trypsin/EDTA solution (1x 0.25% Trypsin and 0.02% EDTA in Hanks Balanced Salt Solution (HBSS) | HiMedia | TCL049-100mL |