La respirometría de alta resolución acoplada a sensores de fluorescencia determina el consumo de oxígeno mitocondrial y la generación de especies reactivas de oxígeno (ROS). El presente protocolo describe una técnica para evaluar la frecuencia respiratoria mitocondrial y la producción de ROS en el nervio ciático permeabilizado.
La disfunción mitocondrial en los nervios periféricos acompaña a varias enfermedades asociadas con la neuropatía periférica, que puede desencadenarse por múltiples causas, incluidas enfermedades autoinmunes, diabetes, infecciones, trastornos hereditarios y tumores. La evaluación de la función mitocondrial en los nervios periféricos del ratón puede ser un desafío debido al pequeño tamaño de la muestra, un número limitado de mitocondrias presentes en el tejido y la presencia de una vaina de mielina. La técnica descrita en este trabajo minimiza estos desafíos mediante el uso de un protocolo de permeabilización único adaptado de uno utilizado para las fibras musculares, para evaluar la función mitocondrial del nervio ciático en lugar de aislar las mitocondrias del tejido. Al medir la producción fluorimétrica de especies reactivas con Amplex Red/Peroxidasa y comparar diferentes sustratos e inhibidores mitocondriales en nervios permeabilizados con saponina, fue posible detectar estados respiratorios mitocondriales, especies reactivas de oxígeno (ROS) y la actividad de complejos mitocondriales simultáneamente. Por lo tanto, el método presentado aquí ofrece ventajas en comparación con la evaluación de la función mitocondrial mediante otras técnicas.
Las mitocondrias son esenciales para mantener la viabilidad celular y realizan numerosas funciones celulares, como el metabolismo energético (vías de metabolismo de glucosa, aminoácidos, lípidos y nucleótidos). Como sitio principal de producción de especies reactivas de oxígeno (ROS), las mitocondrias son centrales en varios procesos de señalización celular como la apoptosis y participan en la síntesis de grupos de hierro-azufre (Fe-S), la importación y maduración de proteínas mitocondriales y el mantenimiento de su genoma y ribosomas 1,2,3. La red de dinámica de membranas mitocondriales está controlada por procesos de fusión y fisión, y también cuentan con maquinaria para el control de calidad y mitofagia 4,5,6.
La disfunción mitocondrial se asocia con la aparición de varias afecciones patológicas como el cáncer, la diabetes y la obesidad7. Se detectan alteraciones en la función mitocondrial en trastornos neurodegenerativos que afectan al sistema nervioso central, como en la enfermedad de Alzheimer 8,9, la enfermedad de Parkinson10,11, la esclerosis lateral amiotrófica12,13 y la enfermedad de Huntington 14,15 . En el sistema nervioso periférico, la pérdida de la función mitocondrial en los axones se observa en neuropatías inmunes, como el síndrome de Guillain-Barré16,17, y en asociación con una alta producción de ROS mitocondriales en axones, estos eventos conducen a la activación de la MAP quinasa en las células de Schwann18. Esto demuestra que la fisiología mitocondrial puede ser esencial no solo para una célula específica del sitio, sino para un tejido completo. En la polineuropatía sensorial distal asociada al VIH (HIV-DSP), las mitocondrias tienen un papel en el mecanismo por el cual la proteína transactivadora de la transcripción (HIV-TAT) permite que el VIH se replique de manera eficiente, así como varias otras funciones en la patogénesis de la infección por VIH19,20.
La evaluación de la fisiología mitocondrial del nervio ciático se ha convertido en un objetivo esencial para la investigación de la neuropatía 7,21,22. En la neuropatía diabética, los análisis proteómicos y metabolómicos sugieren que la mayoría de las alteraciones moleculares en la diabetes afectan a la fosforilación oxidativa mitocondrial del nervio ciático y al metabolismo lipídico7. Estas alteraciones también parecen ser signos tempranos de diabetes inducida por la obesidad21. En un modelo de ratón de neuropatía dolorosa inducida por quimioterapia, el deterioro mitocondrial en el nervio ciático se detecta como una disminución en la fosforilación oxidativa22 y una reducción de las actividades de los complejos mitocondriales, el potencial de membrana y el contenido de ATP23. Sin embargo, aunque varios grupos han citado la disfunción mitocondrial en neuropatías, estos estudios se limitan a las mediciones de la actividad en complejos mitocondriales sin preservación de las membranas mitocondriales, careciendo de evaluación de la integridad mitocondrial o mediciones del contenido de ATP como parámetro para la producción de ATP mitocondrial. En general, una evaluación adecuada del consumo de oxígeno mitocondrial y la producción de ROS requiere el aislamiento de las mitocondrias por centrifugación diferencial en un gradiente percol/sacarosa. El aislamiento de las mitocondrias también puede ser un factor limitante para el tejido nervioso ciático debido a la gran cantidad de tejido necesario y la pérdida e interrupción de las mitocondrias.
El presente estudio tiene como objetivo proporcionar un protocolo para medir la fisiología mitocondrial como el consumo de oxígeno mitocondrial y la producción de ROS en el nervio ciático, preservando las membranas mitocondriales y sin necesidad de aislar las mitocondrias. Este protocolo se adapta a partir de mediciones de consumo de oxígeno en fibras musculares permeabilizadas24 mediante respirometría de alta resolución (HRR). Las ventajas de este procedimiento son la posibilidad de evaluar las mitocondrias en pequeñas cantidades de tejido como el nervio ciático y evaluar los parámetros mitocondriales in situ, preservando así el entorno mitocondrial, la estructura y el perfil bioenergético, para obtener un resultado fisiológicamente confiable. Los estados respiratorios mitocondriales se determinaron con sustratos e inhibidores después de la permeabilización del nervio ciático para evaluar adecuadamente la bioenergética mitocondrial y el coeficiente del citocromo c para la integridad de la membrana mitocondrial, proporcionando una guía para los pasos de la evaluación del sistema de transporte de electrones mitocondrial (ETS) y el cálculo de los parámetros esenciales. Este estudio puede proporcionar herramientas para responder preguntas sobre mecanismos fisiopatológicos en los que está implicado el metabolismo del nervio ciático, como las neuropatías periféricas.
Varias enfermedades o afecciones que acompañan a las neuropatías tienen la disfunción mitocondrial como factor de riesgo. La evaluación de la función mitocondrial en los nervios periféricos es esencial para dilucidar cómo actúan las mitocondrias en estas condiciones neurodegenerativas. La evaluación de la función mitocondrial es laboriosa debido a la dificultad del método de aislamiento y la escasez de material. Por lo tanto, el desarrollo de técnicas de permeabilización tisular que no requieran el aislamien…
The authors have nothing to disclose.
Este estudio fue financiado por el Instituto Serrapilheira, la Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), el Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) y la Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES). Agradecemos al Dr. Antonio Galina Filho, a la Dra. Mónica Montero Lomeli y al Dr. Claudio Masuda por el apoyo con las instalaciones del laboratorio, y a la Dra. Martha Sorenson por los amables y valiosos comentarios para mejorar el artículo.
Adenosine 5' triphosphate dissodium salt hydrate | Sigma-Aldrich | A26209 | |
Adenosine 5′-diphosphate sodium salt | Sigma-Aldrich | A2754 | |
Amplex Red Reagent | Thermo Fisher scientific | A12222 | Amplex Red is prepared in DMSO accordindly with product datasheet |
Antimycin A (from Streptomyces sp.) | Sigma-Aldrich | A8674 | |
Bovine Serum Albumin | Sigma-Aldrich | A7030 | heat shock fraction, protease free, fatty acid free, essentially globulin free, pH 7, ≥98% |
Calcium carbonate | Sigma-Aldrich | C6763 | |
Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) | Sigma-Aldrich | C2920 | |
Cytochrome c | Sigma-Aldrich | C7752 | (from equine heart; small hemeprotein) |
DataLab version 5.1.1.91 | OROBOROS INSTRUMENTS, Austria | Copyright (c) 2002 – 13 by Dr. Erich Gnaiger | |
Digital orbital microplate shaker 120V | Thermo Fisher scientific | 88882005 | |
DL-Dithiothreitol | Sigma-Aldrich | 43819 | |
EGTA sodium salt | Sigma-Aldrich | E8145 | |
Hamilton syringe | Sigma-Aldrich | HAM80075 | 10 uL, 25 uL and 50 uL |
HEPES | Sigma-Aldrich | H3375 | |
Hydrogen peroxide solution 30% W/W | Merck | H1009 | |
Imidazole | Sigma-Aldrich | I2399 | |
L-(−)-Malic acid | Sigma-Aldrich | M7397 | |
Magnesium chloride hexahydrate | Sigma-Aldrich | M2393 | |
MES sodium salt | Sigma-Aldrich | M3885 | |
Micro-dissecting forceps, curved | Sigma-Aldrich | F4142 | |
Micro-dissecting forceps, straight | Sigma-Aldrich | F4017 | |
O2K – Filter set Amplex Red | OROBOROS INSTRUMENTS, Austria | 44321-01 | Fasching M, Sumbalova Z, Gnaiger E (2013) O2k-Fluorometry: HRR and H2O2 production in mouse brain mitochondria. Mitochondr Physiol Network 17.17. |
O2K – Fluorescence LED2 – module component Fluorscence-Sensor Green | OROBOROS INSTRUMENTS, Austria | 44210-01 | |
Oligomycin | Sigma-Aldrich | O4876 | (from Streptomyces diastatochromogenes; mixture of oligomycins A, B, and C |
OROBOROS Oxygraph-2k | OROBOROS INSTRUMENTS, Austria | http://www.oroboros.at | |
Palmitoylcarnitine (Palmitoyl-DL-carnitine-HCl) | Sigma-Aldrich | P4509 | |
Peroxidase from horseradish | Sigma-Aldrich | P8375 | |
Petri dishes, polystyrene | MERCK | P5606 | |
Phosphocreatine disodium salt hydrate | Sigma-Aldrich | P7936 | |
Potassium dihydrogen phosphate monobasic | Sigma-Aldrich | PHR1330 | |
Potassium hydroxide | Sigma-Aldrich | 221473 | |
Rotenone | Sigma-Aldrich | R8875 | |
Saponin | Sigma-Aldrich | SAE0073 | |
Sodium pyruvate | Sigma-Aldrich | P5280 | |
Sodium succinate dibasic hexahydrate | Sigma-Aldrich | S2378 | |
Sucrose | Sigma-Aldrich | S9378 | |
Taurine | Sigma-Aldrich | T0625 |