蛍光センサーと組み合わせた高解像度の呼吸法は、ミトコンドリアの酸素消費量と活性酸素種(ROS)の生成を決定します。本プロトコールは、透過処理された坐骨神経におけるミトコンドリア呼吸数およびROS産生を評価する技術を記載する。
末梢神経のミトコンドリア機能障害は、末梢神経障害に関連するいくつかの疾患を伴い、自己免疫疾患、糖尿病、感染症、遺伝性疾患、および腫瘍を含む複数の原因によって引き起こされる可能性がある。マウス末梢神経におけるミトコンドリア機能の評価は、サンプルサイズが小さいこと、組織内に存在するミトコンドリアの数が限られていること、およびミエリン鞘が存在するため、困難な場合があります。この研究で説明した技術は、ミトコンドリアを組織から単離する代わりに、筋線維に使用されるものから適応した独自の透過処理プロトコルを使用して、坐骨神経ミトコンドリア機能を評価することによって、これらの課題を最小限に抑えます。Amplex Red/Peroxidaseで蛍光反応種産生を測定し、サポニン透過神経における異なるミトコンドリア基質および阻害剤を比較することにより、ミトコンドリア呼吸状態、活性酸素種(ROS)、およびミトコンドリア複合体の活性を同時に検出することができました。したがって、ここで提示する方法は、他の技術によるミトコンドリア機能の評価と比較して利点を提供する。
ミトコンドリアは、細胞の生存率を維持するために不可欠であり、エネルギー代謝(グルコース、アミノ酸、脂質、ヌクレオチド代謝経路)などの多数の細胞機能を実行します。活性酸素種(ROS)産生の主要な部位として、ミトコンドリアはアポトーシスなどのいくつかの細胞シグナル伝達プロセスの中心であり、鉄硫黄(Fe-S)クラスターの合成、ミトコンドリアタンパク質の輸入と成熟、およびそれらのゲノムとリボソームの維持に関与しています1,2,3。ミトコンドリア膜ダイナミクスネットワークは、融合および核分裂プロセスによって制御され、彼らはまた、品質管理およびマイトファジー4,5,6のための機械を有する。
ミトコンドリア機能障害は、癌、糖尿病、および肥満などのいくつかの病理学的状態の出現と関連している7。ミトコンドリア機能の障害は、アルツハイマー病8,9、パーキンソン病10,11、筋萎縮性側索硬化症12,13、およびハンチントン病14,15のように、中枢神経系に影響を及ぼす神経変性障害において検出される。.末梢神経系において、軸索におけるミトコンドリア機能の喪失は、ギラン・バレー症候群16、17などの免疫神経障害において観察され、軸索における高いミトコンドリアROS産生と関連して、これらの事象はシュワン細胞18におけるMAPキナーゼ活性化をもたらす。これは、ミトコンドリア生理学が部位特異的細胞だけでなく、組織全体にとって不可欠である可能性があることを示しています。HIV関連遠位感覚多発ニューロパチー(HIV-DSP)において、ミトコンドリアは、転写のトランスアクチベーター(HIV-TAT)タンパク質がHIVを効率的に複製することを可能にするメカニズムにおける役割、ならびにHIV感染の病因における他のいくつかの役割を有する19,20。
坐骨神経ミトコンドリア生理学の評価は、神経障害を調査するための必須の標的として浮上している7、21、22。糖尿病性神経障害において、プロテオミクスおよびメタボローム解析は、糖尿病におけるほとんどの分子変化が坐骨神経ミトコンドリア酸化的リン酸化的リン酸化および脂質代謝に影響を及ぼすことを示唆している7。これらの変化はまた、肥満誘発性糖尿病の初期の徴候であるように思われる21。化学療法誘発性疼痛性神経障害のマウスモデルにおいて、坐骨神経におけるミトコンドリア障害は、酸化的リン酸化22の減少、およびミトコンドリア複合体活性、膜電位、およびATP含量の減少として検出される23。しかし、いくつかのグループが神経障害におけるミトコンドリア機能障害を挙げているが、これらの研究は、ミトコンドリア膜の保存のないミトコンドリア複合体における活性の測定に限定されており、ミトコンドリア完全性の評価またはミトコンドリアATP産生のパラメータとしてのATP含量の測定を欠いている。一般に、ミトコンドリアの酸素消費量とROS産生を適切に評価するには、パーコール/スクロース勾配での微分遠心分離によるミトコンドリアの単離が必要です。ミトコンドリアの単離はまた、大量の組織が必要であり、ミトコンドリアの喪失および破壊のために、坐骨神経組織の制限因子となり得る。
本研究は、ミトコンドリアの酸素消費と坐骨神経におけるROS産生としてミトコンドリア生理学を測定し、ミトコンドリア膜を保存し、ミトコンドリアを単離する必要なしに測定するプロトコルを提供することを目的とする。このプロトコルは、高分解能呼吸法(HRR)による透過処理筋線維24 における酸素消費測定値から適合される。この手順の利点は、坐骨神経などの少量の組織におけるミトコンドリアを評価し、その 場でミトコンドリアパラメータを評価し、それによってミトコンドリア環境、構造、および生体エネルギープロファイルを保存し、生理学的に信頼できる結果を得る可能性である。ミトコンドリアの呼吸状態は、ミトコンドリアの生体エネルギー学およびミトコンドリア膜完全性のためのシトクロムc係数を適切に評価するために、坐骨神経透過後の基質および阻害剤を用いて決定され、ミトコンドリア電子輸送系(ETS)の評価および必須パラメータの計算のステップのガイドを提供する。この研究は、末梢神経障害など、坐骨神経代謝が関与する病態生理学的メカニズムの質問に答えるためのツールを提供することができる。
神経障害に伴ういくつかの疾患または状態は、危険因子としてミトコンドリア機能障害を有する。末梢神経のミトコンドリア機能の評価は、これらの神経変性状態でミトコンドリアがどのように作用するかを解明するために不可欠です。ミトコンドリア機能の評価は、単離方法の難しさおよび材料の不足のために面倒である。従って、ミトコンドリアの単離を必要としない組織透過技術の開?…
The authors have nothing to disclose.
この研究は、Instituto Serrapilheira、Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)、Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)、Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil(CAPES)の資金提供を受けた。アントニオ・ガリーナ・フィーリョ博士、モニカ・モンテロ・ロメリ博士、クラウディオ・増田博士の研究室施設への支援、マーサ・ソレンソン博士の論文改善のための親切で貴重なコメントに感謝しています。
Adenosine 5' triphosphate dissodium salt hydrate | Sigma-Aldrich | A26209 | |
Adenosine 5′-diphosphate sodium salt | Sigma-Aldrich | A2754 | |
Amplex Red Reagent | Thermo Fisher scientific | A12222 | Amplex Red is prepared in DMSO accordindly with product datasheet |
Antimycin A (from Streptomyces sp.) | Sigma-Aldrich | A8674 | |
Bovine Serum Albumin | Sigma-Aldrich | A7030 | heat shock fraction, protease free, fatty acid free, essentially globulin free, pH 7, ≥98% |
Calcium carbonate | Sigma-Aldrich | C6763 | |
Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) | Sigma-Aldrich | C2920 | |
Cytochrome c | Sigma-Aldrich | C7752 | (from equine heart; small hemeprotein) |
DataLab version 5.1.1.91 | OROBOROS INSTRUMENTS, Austria | Copyright (c) 2002 – 13 by Dr. Erich Gnaiger | |
Digital orbital microplate shaker 120V | Thermo Fisher scientific | 88882005 | |
DL-Dithiothreitol | Sigma-Aldrich | 43819 | |
EGTA sodium salt | Sigma-Aldrich | E8145 | |
Hamilton syringe | Sigma-Aldrich | HAM80075 | 10 uL, 25 uL and 50 uL |
HEPES | Sigma-Aldrich | H3375 | |
Hydrogen peroxide solution 30% W/W | Merck | H1009 | |
Imidazole | Sigma-Aldrich | I2399 | |
L-(−)-Malic acid | Sigma-Aldrich | M7397 | |
Magnesium chloride hexahydrate | Sigma-Aldrich | M2393 | |
MES sodium salt | Sigma-Aldrich | M3885 | |
Micro-dissecting forceps, curved | Sigma-Aldrich | F4142 | |
Micro-dissecting forceps, straight | Sigma-Aldrich | F4017 | |
O2K – Filter set Amplex Red | OROBOROS INSTRUMENTS, Austria | 44321-01 | Fasching M, Sumbalova Z, Gnaiger E (2013) O2k-Fluorometry: HRR and H2O2 production in mouse brain mitochondria. Mitochondr Physiol Network 17.17. |
O2K – Fluorescence LED2 – module component Fluorscence-Sensor Green | OROBOROS INSTRUMENTS, Austria | 44210-01 | |
Oligomycin | Sigma-Aldrich | O4876 | (from Streptomyces diastatochromogenes; mixture of oligomycins A, B, and C |
OROBOROS Oxygraph-2k | OROBOROS INSTRUMENTS, Austria | http://www.oroboros.at | |
Palmitoylcarnitine (Palmitoyl-DL-carnitine-HCl) | Sigma-Aldrich | P4509 | |
Peroxidase from horseradish | Sigma-Aldrich | P8375 | |
Petri dishes, polystyrene | MERCK | P5606 | |
Phosphocreatine disodium salt hydrate | Sigma-Aldrich | P7936 | |
Potassium dihydrogen phosphate monobasic | Sigma-Aldrich | PHR1330 | |
Potassium hydroxide | Sigma-Aldrich | 221473 | |
Rotenone | Sigma-Aldrich | R8875 | |
Saponin | Sigma-Aldrich | SAE0073 | |
Sodium pyruvate | Sigma-Aldrich | P5280 | |
Sodium succinate dibasic hexahydrate | Sigma-Aldrich | S2378 | |
Sucrose | Sigma-Aldrich | S9378 | |
Taurine | Sigma-Aldrich | T0625 |