Viene descritto un modello di lesione cerebrale meccanica nel pesce zebra adulto per studiare i meccanismi molecolari che regolano la loro elevata capacità rigenerativa. Il metodo spiega di creare una ferita da taglio nel tectum ottico di più specie di piccoli pesci per valutare le risposte rigenerative utilizzando l’immunocolorazione fluorescente.
Mentre i pesci zebra hanno una capacità superiore di rigenerare il loro sistema nervoso centrale (SNC), il medaka ha una capacità rigenerativa del SNC inferiore. È stato sviluppato un modello di lesione cerebrale nel tectum ottico adulto di zebrafish e medaka e sono state eseguite analisi istologiche e molecolari comparative per chiarire i meccanismi molecolari che regolano l’elevata capacità rigenerativa di questo tessuto in queste specie di pesci. Qui viene presentato un modello di lesione da coltellata per il tectum ottico adulto utilizzando un ago e analisi istologiche per la proliferazione e la differenziazione delle cellule staminali neurali (NSC). Un ago è stato inserito manualmente nella regione centrale del tectum ottico, quindi i pesci sono stati perfusi intracardicamente e i loro cervelli sono stati sezionati. Questi tessuti sono stati quindi criosezionati e valutati utilizzando immunocolorazione contro i marcatori di proliferazione e differenziazione NSC appropriati. Questo modello di lesione del tectum fornisce risultati robusti e riproducibili sia nel pesce zebra che nel medaka, consentendo di confrontare le risposte NSC dopo l’infortunio. Questo metodo è disponibile per piccoli teleostei, tra cui zebrafish, medaka e killifish africani, e ci consente di confrontare la loro capacità rigenerativa e studiare meccanismi molecolari unici.
Il pesce zebra (Danio rerio) ha una maggiore capacità di rigenerare il sistema nervoso centrale (SNC) rispetto ad altri mammiferi 1,2,3. Recentemente, per comprendere meglio i meccanismi molecolari alla base di questa maggiore capacità rigenerativa, sono state eseguite analisi comparative della rigenerazione tissutale utilizzando la tecnologia di sequenziamento di nuova generazione 4,5,6. Le strutture cerebrali nei pesci zebra e nei tetrapodi sono molto diverse 7,8,9. Ciò significa che sono stati sviluppati diversi modelli di lesioni cerebrali che utilizzano piccoli pesci con strutture cerebrali e caratteristiche biologiche simili per facilitare lo studio dei meccanismi molecolari sottostanti che contribuiscono a questa maggiore capacità rigenerativa.
Inoltre, medaka (Oryzias latipes) è un animale da laboratorio popolare con una bassa capacità di rigenerazione cardiaca e neuronale10,11,12,13 rispetto al pesce zebra. Zebrafish e medaka hanno strutture cerebrali e nicchie simili per le cellule staminali neurali adulte (NSC)14,15,16,17. Nel pesce zebra e nel medaka, il tectum ottico comprende due tipi di CSN, cellule staminali simil-neuroepiteliali e cellule gliali radiali (RGC)15,18. In precedenza era stata sviluppata una lesione da coltellata per il tectum ottico del pesce zebra adulto, e questo modello è stato utilizzato per studiare i meccanismi molecolari che regolano la rigenerazione cerebrale in questi animali 19,20,21,22,23. Questo modello di lesione da ferita da pugnalata di zebrafish giovane adulto ha indotto neurogenesi rigenerativa da RGC 19,24,25. Questa ferita da taglio nel tectum ottico è un metodo robusto e riproducibile 13,19,20,21,22,23,24,25. Quando lo stesso modello di lesione è stato applicato al medaka adulto, la bassa capacità neurogena degli RGC nel tectum ottico medaka è stata rivelata attraverso l’analisi comparativa della proliferazione e differenziazione degli RGC dopo la lesione13.
I modelli di lesione da taglio nel tectum ottico sono stati sviluppati anche nei modelli di mummichog26, ma i dettagli della lesione del tectum non sono stati ben documentati rispetto alla lesione telencefalica27. La lesione da coltellata nel tectum ottico utilizzando zebrafish e medaka consente lo studio delle risposte cellulari differenziali e dell’espressione genica tra specie con capacità rigenerativa differenziale. Questo protocollo descrive come eseguire una ferita da taglio nel tectum ottico usando un ago per iniezione. Questo metodo può essere applicato a piccoli pesci come zebrafish e medaka. I processi per la preparazione del campione per l’analisi istologica e l’analisi della proliferazione e differenziazione cellulare mediante immunoistochimica fluorescente e criosezioni sono spiegati qui.
Qui viene descritta una serie di metodi che possono essere utilizzati per indurre lesioni da coltellata nel tectum ottico utilizzando un ago per facilitare la valutazione della proliferazione e della differenziazione RGC dopo lesione cerebrale. Le ferite da taglio mediate da ago sono un metodo semplice ed efficiente che può essere applicato a molti campioni sperimentali utilizzando un set standard di strumenti. Sono stati sviluppati modelli di lesioni da coltellata per diverse regioni del cervello del pesce<sup class="x…
The authors have nothing to disclose.
Questo lavoro è stato sostenuto da JSPS KAKENHI Grant Number 18K14824 e 21K15195 e da una sovvenzione interna di AIST, Giappone.
10 mL syringe | TERUMO | SS-10ESZ | |
1M Tris-HCl (pH 9.0) | NIPPON GENE | 314-90381 | |
30 G needle | Dentronics | HS-2739A | |
4% Paraformaldehyde Phosphate Buffer Solution | Wako | 163-20145 | |
Aluminum block | 115 x 80 x 37 mm (W x D x H) is enough size to freeze 6 cryomolds | ||
Anti-BLBP | Millipore | ABN14 | 1:500 |
Anti-BrdU | Abcam | ab1893 | 1:500 |
Anti-HuC | Invitrogen | A21271 | 1:100 |
Anti-PCNA | Santa Cruz Biotechnology | sc-56 | 1:200 |
Brmodeoxyuridine | Wako | 023-15563 | |
Confocal microscope C1 plus | Nikon | ||
Cryomold | Sakura Finetek Japan | 4565 | 10 x 10 x 5 mm (W x D x H) |
Cryostat | Leica | CM1960 | |
Danio rerio WT strains RW | |||
Extension tube | TERUMO | SF-ET3520 | |
Fluoromount (TM) Aqueous Mounting Medium, for use with fluorescent dye-stained tissues | SIGMA-ALDRICH | F4680-25ML | |
Forceps | DUMONT | 11252-20 | |
Goat anti-Mouse IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor Plus 488 | Invitrogen | A32723 | |
Goat anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 546 | Invitrogen | A11035 | |
Hoechst 33342 solution | Dojindo | 23491-52-3 | |
Hydrochloric Acid | Wako | 080-01066 | |
Incubation Chamber for 10 slides Dark Orange | COSMO BIO CO., LTD. | 10DO | |
MAS coat sliding glass | Matsunami glass | MAS-01 | |
Micro cover glass | Matsunami glass | C024451 | |
Microscopy | Nikon | SMZ745T | |
Normal horse serum blocking solution | VECTOR LABRATORIES | S-2000-20 | |
O.C.T Compound | Sakura Finetek Japan | 83-1824 | |
Oryzias latipes WT strains Cab | |||
PAP Pen Super-Liquid Blocker | DAIDO SANGYO | PAP-S | |
Phosphate Buffered Saline (PBS) Tablets, pH 7.4 | TaKaRa | T9181 | |
Styrofoam tray | 100 x 100 x 10 mm (W x D x H) styrofoam sheet is available as tray | ||
Sucrose | Wako | 196-00015 | 30 % (w/v) Sucrose in PBS |
Tricaine (MS-222) | nacarai tesque | 14805-24 | |
Trisodium Citrate Dihydrate | Wako | 191-01785 | |
Triton X-100 | Wako | 04605-250 |