Summary

小鼠视网膜内皮细胞分离用于二代测序

Published: October 11, 2021
doi:

Summary

该协议描述了一种分离鼠出生后视网膜内皮细胞的方法,该方法针对细胞产量,纯度和活力进行了优化。这些细胞适用于下一代测序方法。

Abstract

下一代测序的最新进展提高了研究人员对分子和细胞生物学的认识,几项研究揭示了血管生物学的新范式。将这些方法应用于血管发育模型需要优化胚胎和出生后组织的细胞分离技术。细胞产量、活力和纯度都需要最大化,才能从下一代测序方法中获得准确且可重现的结果。研究人员使用新生小鼠视网膜血管化模型来研究血管发育的机制。研究人员使用该模型来研究血管形成和成熟过程中血管生成和动脉静脉命运规格的机制。应用下一代测序技术研究视网膜血管发育模型需要优化一种分离视网膜内皮细胞的方法,以最大限度地提高细胞产量、活力和纯度。该协议描述了使用荧光激活细胞分选(FACS)进行小鼠视网膜组织分离,消化和纯化的方法。结果表明,FACS纯化的CD31 + / CD45-内皮细胞群高度富集内皮细胞基因表达,并且在FACS后60分钟内活力没有变化。其中包括使用该方法分离的内皮细胞的下一代测序方法的代表性结果,包括批量RNA测序和单细胞RNA测序,表明这种用于视网膜内皮细胞分离的方法与下一代测序应用兼容。这种视网膜内皮细胞分离方法将允许先进的测序技术来揭示血管发育的新机制。

Introduction

通过下一代测序方法对核酸进行测序的高通量能力极大地提高了研究人员分子和细胞生物学的认识。这些先进技术包括全转录组 RNA 测序、靶区 DNA 测序以鉴定单核苷酸多态性 (SNP)、染色质免疫沉淀 (ChIP) 测序中结合转录因子的 DNA 测序,或转座酶可及染色质 (ATAC) 测序测定中的开放染色质区域,以及单细胞 RNA 测序1.在血管生物学中,这些进展使研究人员能够阐明复杂的发育和疾病机制,以及沿着不同表型的连续统一体区分基因表达模式23。未来的实验可以通过将下一代测序与评估的血管发育模型相结合来进一步定义复杂的机制,但样品制备方法需要与先进的测序技术兼容。

二代测序方法的质量、准确性和重现性取决于样品制备方法。当分离细胞亚群或从组织中产生单细胞悬液时,最佳的消化和纯化方法对于最大化细胞群的细胞数量、活力和纯度至关重要45。这需要消化方法的平衡:强消化对于从组织中释放细胞并获得足够的细胞用于下游方法是必要的,但如果消化太强,细胞活力将受到负面影响67。此外,细胞群的纯度对于可靠的结果和准确的数据分析是必要的,这可以通过FACS完成。这突出了优化细胞分离方法以将二代测序应用于已建立的血管发育模型的重要性。

用于研究血管发育的一个特征良好的模型是鼠视网膜血管发育模型。鼠视网膜脉管系统在出生后二维浅丛中发育,出生后第 (P)3 天从视神经可见初始血管生成萌芽,在 P6 处可见血管生成前部,有柄和尖端细胞,初始血管成熟可见,P9 89 后可见血管丛成熟。在初始血管丛的重塑过程中,内皮细胞在不同血管中经历对动脉、毛细血管和静脉表型的规范,以产生循环网络1011。因此,该方法使研究人员能够在发育过程中的不同时间点可视化血管生成血管丛形成和内皮动脉 – 静脉规格和成熟9。此外,该模型提供了一种研究转基因操作对血管生成和血管丛发育影响的方法,该方法已应用于研究血管发育、动脉静脉畸形和氧诱导的新生血管形成1213141516.为了将下一代测序方法与小鼠视网膜血管发育模型相结合,需要一种优化的方案,用于从视网膜组织中分离内皮细胞。

该协议描述了一种优化的方法,用于在P6下消化小鼠的视网膜组织,以最大限度地提高细胞产量,纯度和活力。从P6小鼠中分离视网膜组织,消化20分钟,对CD31和CD45进行免疫染色,并通过FACS纯化以在约2.5小时内分离内皮细胞的单细胞悬液(图1A)。发现这些内皮细胞在分离后60分钟内保持高活力17,允许为下一代测序方法进行文库制备。此外,还提供了使用该分离方案的两种独立的下一代测序方法的FACS门控和质量控制结果的代表性结果:全转录组RNA测序和单细胞RNA测序。该方法允许将下一代测序方法与视网膜血管化模型结合使用,以阐明血管发育的新机制。

Protocol

耶鲁大学和弗吉尼亚大学的机构动物护理和使用委员会批准了本协议中列出的所有动物实验。 1.获取小鼠眼睛进行视网膜隔离 准备 1x 冰冷的 PBS,并向 48 孔板的每个孔中加入 500 μL。 根据批准的机构指南,在出生后第六天(P6)对新生小鼠实施安乐死。对于该实验,大约4-8只新生小鼠在呼吸停止后通过异氟醚吸入在 P6处安乐死至少三分钟,?…

Representative Results

视网膜组织的消化和CD31和CD45的免疫染色导致在对细胞,单细胞和活力进行门控后可识别的CD31 + / CD45-内皮细胞群(图2A)。需要CD45免疫染色以消除CD31 + / CD45 +细胞,其中包括血小板和一些白细胞21。应对每个实验进行对照,以显示抗体特异性并指导门控策略(图2B)。这个百分比相对较低,约占消化单细胞悬液中所有细胞的0.5%-1.0%。</…

Discussion

该协议描述了一种从出生后鼠视网膜组织中分离内皮细胞的方法,该方法已针对高细胞数量,纯度和活力进行了优化。通过 CD31+/CD45-免疫染色从消化的单细胞悬液中分离内皮细胞群的 FACS 获得细胞纯度。在台盼蓝染色和 qPCR 对 CD31、CD45 和 VE-钙粘蛋白的基因表达测定中量化分离质量(尽管 VE-钙粘蛋白未用于免疫染色)。该方案中的关键步骤是视网膜组织分离和组织消化。应快速进行视网膜组织分?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

感谢耶鲁大学流式细胞术设施、弗吉尼亚大学流式细胞术核心设施、耶鲁大学基因组分析中心和弗吉尼亚大学基因组分析和技术核心,感谢他们在为所介绍的实验做出贡献方面的努力、专业知识和建议。这项研究由NIH资助N.W.C.(T32 HL007224,T32 HL007284),SC(T32 HL007284),K.W.(R01 HL142650)和K.K.H.(R01 HL146056,R01 DK118728,UH3 EB025765)。

Materials

2 mL Eppendorf safe-lock tubes USA Scientific 4036-3352
5 ml Falcon Test Tubes with Cell Strainer Snap Cap Corning 352235
60 mm Non TC-treated Culture Dish Corning 430589
APC Rat Anti-Mouse CD31 BD Biosciences 551262
APC Rat IgG2a κ Isotype Control BD Biosciences 553932
BD FACSChorus Software BD Biosciences FACSCHORUS
BD FACSMelody Cell Sorter BD Biosciences FACSMELODY
Collagenase Type II Sigma-Aldrich 234115
Costar 48-well Clear TC-treated Multiple Well Plates, Individually Wrapped, Sterile Corning 3548
D-Glucose Gibco A2494001
Disposable Graduated Transfer Pipettes Fisher Scientific 12-711-9AM
Dissecting Pan Wax Carolina 629100
Dissection scissors Fine Science Tools 14085-08
Dissection Stereo Microscope M165 FC Leica M165FC
Dulbecco's Modified Eagle Medium (DMEM) Gibco 11965-052
Dulbecco’s Phosphate Buffered Saline (PBS) Gibco 14190144
Eppendorf Flex-Tubes Microcentrifuge Tubes 1.5 mL Sigma-Aldrich 22364120
Fetal Bovine Serum (FBS) Gemini Bio 100-106
Fine dissection forceps Fine Science Tools 11250-00
Hank's Buffered Salt Solution (HBSS) Gibco 14175095
HEPES (1M) Gibco 15630130
iScript cDNA Synthesis Kit Bio-Rad 1708890
Isoflurane, USP Covetrus 11695067772
Isotemp General Purpose Deluxe Water Bath Fisher Scientific FSGPD20
Primer: ActB_Forward: 5’- agagggaaatcgtgcgtgac -3’ Integrated DNA Technologies N/A
Primer: ActB_Reverse: 5’- caatagtgatgacctggccgt -3’ Integrated DNA Technologies N/A
Primer: CD31_Forward: 5’- gagcccaatcacgtttcagttt -3’ Integrated DNA Technologies N/A
Primer: CD31_Reverse: 5’- tccttcctgcttcttgctagct -3’ Integrated DNA Technologies N/A
Primer: CD45_Forward: 5’- gggttgttctgtgccttgtt -3’ Integrated DNA Technologies N/A
Primer: CD45_Reverse: 5’- ctggacggacacagttagca -3’ Integrated DNA Technologies N/A
Primer: VE-Cadherin_Forward: 5’- tcctctgcatcctcactatcaca -3’ Integrated DNA Technologies N/A
Primer: VE-Cadherin_Reverse: 5’- gtaagtgaccaactgctcgtgaat -3’ Integrated DNA Technologies N/A
Propidium iodide Sigma-Aldrich P4864
RNeasy Plus Mini Kit Qiagen 74134
Sorvall Legend Micro 21R Centrifuge, Refrigerated ThermoFisher 75002477
SYBR-Green iTaq Universal SYBR Green Supermix Bio-Rad 172-5120
Trypan Blue Solution ThermoFisher 15250061
V450 Rat Anti-Mouse CD45 BD Biosciences 560501
V450 Rat IgG2b, κ Isotype Control BD Biosciences 560457

References

  1. Slatko, B. E., Gardner, A. F., Ausubel, F. M. Overview of next-generation sequencing technologies. Current Protocols in Molecular Biology. 122 (1), 59 (2018).
  2. Chavkin, N. W., Hirschi, K. K. Single cell analysis in vascular biology. Frontiers in Cardiovascular Medicine. 7, 42 (2020).
  3. Ma, F., Hernandez, G. E., Romay, M., Iruela-Arispe, M. L. Single-cell RNA sequencing to study vascular diversity and function. Current Opinion in Hematology. 28 (3), 221-229 (2021).
  4. Potter, A. S., Potter, S. S., S, Dissociation of tissues for single-cell analysis. Methods in Molecular Biology. 1926, 55-62 (2019).
  5. Braga, F. A. V., Miragaia, R. J. Tissue handling and dissociation for single-cell RNA-seq. Single Cell Methods: Methods in Molecular Biology. 1979, 9-21 (2019).
  6. Brink, S. C., et al. Single-cell sequencing reveals dissociatin-induced gene expression in tissue subpopulations. Nature Methods. 14 (10), 935-936 (2017).
  7. Skulska, K., Wegrzyn, A. S., Chelmonska-Soyta, A., Chodaczek, G. Impact of tissue enzymatic digestion on analysis of immune cells in mouse reproductive mucosa with a focus on gammadelta T cells. Journal of Immunological Methods. 474, 112665 (2019).
  8. Connolly, S., Hores, T., Smith, L., D’Amore, P. Characterization of vascular development in the mouse retina. Microvascular Research. 36 (3), 275-290 (1988).
  9. Crist, A., Young, C., Meadows, S. Characterization of arteriovenous identity in the developing neonate mouse retina. Gene Expression Patterns: GEP. 23-24, 22-31 (2017).
  10. dela Paz, N. G., D’Amore, P. A. Arterial versus venous endothelial cells. Cell and Tissue Research. 335 (1), 5-16 (2009).
  11. Fang, J. S., Hirschi, K. K. Molecular regulation of arteriovenous endothelial cell specification. F1000Res. 8, (2019).
  12. Smith, L. E., et al. Oxygen-induced retinopathy in the mouse. Investigative Ophthalmology and Visual Science. 35 (1), 101-111 (1994).
  13. Pitulescu, M. E., Schmidt, I., Benedito, R., Adams, R. H. Inducible gene targeting in the neonatal vasculature and analysis of retinal angiogenesis in mice. Nature Protocols. 5 (9), 1518-1534 (2010).
  14. Ruiz, S., et al. A mouse model of hereditary hemorrhagic telangiectasia generated by transmammary-delivered immunoblocking of BMP9 and BMP10. Scientific Reports. 6, 37366 (2016).
  15. Fang, J. S., et al. Shear-induced Notch-Cx37-p27 axis arrests endothelial cell cycle to enable arterial specification. Nature Communication. 8 (1), 2149 (2017).
  16. Ola, R., et al. SMAD4 prevents flow induced arterial-venous malformations by inhibiting Casein Kinase 2. Circulation. 138 (21), 2379-2394 (2018).
  17. Chavkin, N. W., Walsh, K., Hirschi, K. K. Isolation of highly purified and viable retinal endothelial cells. Journal of Vascular Research. 58 (1), 49-57 (2020).
  18. Hulspas, R., O’Gorman, M. R. G., Wood, B. L., Gratama, J. W., Sutherland, D. R. Considerations for the control of background fluorescence in clinical flow cytometry. Cytometry PartB: Clinical Cytometry. 76 (6), 355-364 (2009).
  19. Bachman, J. Reverse-transcription PCR (RT-PCR). Methods in Enzymology. 530, 67-74 (2013).
  20. Green, M. R., Sambrook, J. Quantification of RNA by real-time Reverse Transcription-Polymerase Chain Reaction (RT-PCR). Cold Spring Harbour Protocols. 2018 (10), (2018).
  21. Liu, L., Shi, G. P. CD31: beyond a marker for endothelial cells. Cardiovascular Research. 94 (1), 3-5 (2012).
  22. Zarkada, G., et al. Specialized endothelial tip cells guide neuroretina vascularization and blood-retina-barrier formation. Developmental Cell. 56 (15), 2237-2251 (2021).
  23. Su, X., Sorenson, C. M., Sheibani, N. Isolation and characterization of murine retinal endothelial cells. Molecular Vision. 9, 171-178 (2003).
  24. Benedito, R., et al. The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell. 137 (6), 1124-1135 (2009).
  25. Daneman, R., et al. Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis. Proceedings of the National Academy of Sciences of the United States of America. 106 (2), 641-646 (2009).
  26. Okabe, K., et al. Neurons limit angiogenesis by titrating VEGF in retina. Cell. 159 (3), 584-596 (2014).
  27. Crist, A. M., Lee, A. R., Patel, N. R., Westhoff, D. E., Meadows, S. M. Vascular deficiency of Smad4 causes arteriovenous malformations: a mouse model of Hereditary Hemorrhagic Telangiectasia. Angiogenesis. 21 (2), 363-380 (2018).
  28. Kim, Y. H., Choe, S. W., Chae, M. Y., Hong, S., Oh, S. P. SMAD4 deficiency leads to development of arteriovenous malformations in neonatal and adult mice. Journal of the American Heart Association. 7 (21), 009514 (2018).
  29. Ma, W., et al. Absence of TGFbeta signaling in retinal microglia induces retinal degeneration and exacerbates choroidal neovascularization. eLife. 8, 42049 (2019).
  30. Luo, W., et al. Arterialization requires the timely suppression of cell growth. Nature. 589 (7842), 437-441 (2021).
  31. Lawson, N. D., Vogel, A. M., Weinstein, B. M. sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Developmental Cell. 3 (1), 127-136 (2002).
  32. Larrivee, B., et al. ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway. Developmental Cell. 22 (3), 489-500 (2012).
  33. Wythe, J. D., et al. ETS factors regulate Vegf-dependent arterial specification. Developmental Cell. 26 (1), 45-58 (2013).
  34. Davis, D. M., Purvis, J. E. Computational analysis of signaling patterns in single cells. Seminars in Cell and Developmental Biology. , 35-43 (2015).
  35. Gaudet, S., Miller-Jensen, K. Redefining signaling pathways with an expanding single-cell toolbox. Trends in Biotechnology. 34 (6), 458-469 (2016).
  36. Aibar, S., et al. SCENIC: single-cell regulatory network inference and clustering. Nature Methods. 14 (11), 1083-1086 (2017).
  37. Trapnell, C., et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nature Biotechnology. 32 (4), 381-386 (2014).

Play Video

Citer Cet Article
Chavkin, N. W., Cain, S., Walsh, K., Hirschi, K. K. Isolation of Murine Retinal Endothelial Cells for Next-Generation Sequencing. J. Vis. Exp. (176), e63133, doi:10.3791/63133 (2021).

View Video