Aqui, descrevemos um sistema de reprogramação direta otimizado para melanócitos e um sistema de embalagem de vírus concentrado de alta eficiência que garante uma reprogramação direta suave.
A perda da função dos melanócitos leva ao vitiligo, que afeta seriamente a saúde física e mental dos indivíduos afetados. Atualmente, não há tratamento eficaz a longo prazo para o vitiligo. Portanto, é imprescindível desenvolver um tratamento conveniente e eficaz para o vitiligo. A tecnologia de medicina regenerativa para reprogramação direta de células da pele em melanócitos parece ser um novo tratamento promissor do vitiligo. Isso envolve a reprogramação direta das células da pele do paciente em melanócitos funcionais para ajudar a amenizar a perda de melanócitos em pacientes com vitiligo. No entanto, este método precisa ser testado primeiro em camundongos. Embora a reprogramação direta seja amplamente utilizada, não há um protocolo claro para reprogramação direta em melanócitos. Além disso, o número de fatores de transcrição disponíveis é esmagador.
Aqui, um protocolo concentrado do sistema de embalagem de lentivírus é apresentado para produzir fatores de transcrição selecionados para reprogramação de células da pele para melanócitos, incluindo Sox10, Mitf, Pax3, Sox2, Sox9 e Snai2. Os fibroblastos embrionários do camundongo (MEFs) foram infectados com o lentivírus concentrado para todos esses fatores de transcrição para a reprogramação direta dos MEFs em melanócitos induzidos (iMels) in vitro. Além disso, esses fatores de transcrição foram examinados, e o sistema foi otimizado para reprogramação direta aos melanócitos. A expressão dos marcadores característicos da melanina em iMels no nível genético ou proteico foi significativamente aumentada. Esses resultados sugerem que a reprogramação direta de fibroblastos para melanócitos pode ser uma nova estratégia terapêutica bem sucedida para o vitiligo e confirmar o mecanismo de desenvolvimento de melanócitos, o que fornecerá a base para uma reprogramação direta de fibroblastos em melanócitos in vivo.
O vitiligo é uma doença de pele que afeta seriamente a saúde física e mental dos indivíduos afetados. Por várias razões, incluindo anormalidades metabólicas, estresse oxidativo, geração de mediadores inflamatórios, descolamento celular e resposta autoimune, os melanócitos funcionais são perdidos, e a secreção da melanina é interrompida, levando ao desenvolvimento do vitiligo 1,2. Esta condição ocorre amplamente e é particularmente problemática no rosto. O principal tratamento é o uso sistêmico de corticosteroides e imunomoduladores. A fototerapia pode ser usada para doenças sistêmicas ou locais, e há tratamentos cirúrgicos, como transplante de pele perfurado e transplante de melanócitos autólogos 3,4,5. No entanto, pacientes que usam terapia medicamentosa e fototerapia são propensos a recaídas, e esses tratamentos têm efeitos terapêuticos de longo prazo ruins. O tratamento cirúrgico é traumático e apenas moderadamente eficaz 2,6. Portanto, uma nova e eficaz estratégia terapêutica é necessária para o vitiligo.
A reprogramação de células-tronco pluripotentes induzidas (iPSCs) reverte essas células de seu estado terminal para um estado pluripotente, um processo mediado pelos fatores de transcrição, Oct4, Sox2, Klf4 e c-Myc7. No entanto, devido à possibilidade de tumorigenicidade e ao longo tempo de produção, essa tecnologia tem sido recebida com ceticismo quando aplicada aos cenários clínicos8. Reprogramação direta é uma tecnologia que faz com que um tipo de célula terminal se transforme em outro tipo de célula terminal9. Esse processo é alcançado por fatores adequados de transcrição. Várias células já foram diretamente reprogramadas com sucesso, incluindo cardiomiócitos10, neurônios11 e células ciliadas cocleares12. Alguns pesquisadores até reprogramaram tecido da pele diretamente in situ, que pode ser usado para reparação de feridas13. As vantagens da reprogramação direta incluem redução do tempo de espera e custos, menor risco de câncer, menos problemas éticos e uma melhor compreensão do mecanismo subjacente à determinação do destinocelular 9.
Embora o método de reprogramação direta seja amplamente utilizado, atualmente não há um método definido para a reprogramação direta das células da pele em melanócitos, especialmente por causa dos numerosos fatores de transcrição a serem considerados14,15. Os fatores de transcrição, Mitf, Sox10 e Pax3, têm sido usados para reprogramação direta de células da pele em melanócitos14. Em contraste, a combinação de MITF, PAX3, SOX2 e SOX9 também tem sido usada para reprogramação direta de células da pele em melanócitos humanos em outro estudo15. Neste protocolo, apesar do uso de um método de triagem diferente, o mesmo resultado foi obtido com a combinação de Mitf, Sox10 e Pax3 para reprogramação direta de células da pele em melanócitos como descrito anteriormente14. Desenvolver um sistema para gerar melanócitos de outras células da pele pode fornecer um esquema para transformar outras células da pele de pacientes com vitiligo em melanócitos. Por isso, é fundamental construir um método simples e eficiente para essa reprogramação direta para gerar melanócitos com sucesso.
A qualidade do vírus é crucial para o sucesso da reprogramação direta aos melanócitos neste protocolo. O método de embalar e concentrar vírus neste protocolo é simples e fácil de repetir e não conta com nenhum outro reagente concentrado auxiliar. Este protocolo pode ser seguido com sucesso na maioria dos laboratórios. Para garantir a qualidade do vírus concentrado, os seguintes pontos precisam de atenção especial. Um deles é o estado celular do HEK-293T. Embora as células HEK-293T sejam células imortaliz…
The authors have nothing to disclose.
Este estudo foi parcialmente apoiado por subsídios da Fundação Nacional de Ciência Natural da China (82070638 e 81770621) e da Fundação de Ciência Natural da Província de Jiangsu (BK20180281).
0.05% Trypsin-EDTA | Gibco | 25300-062 | Stored at -20 °C |
0.45 μM filter | Millipore | SLHVR33RB | |
5 mL polystyrene round bottom tube | Falcon | 352052 | |
95%/100% ethanol | LANBAO | 210106 | Stored at RT |
Adenine | Sigma | A2786 | Stock concentration 40 mg/mL Final concentration 24 µg/mL |
Alexa Fluor 555 Goat anti-Mouse IgG2a | Invitrogen | A21137 | Dilution of 1:500 to use |
Antibiotics(Pen/Strep) | Gibco | 15140-122 | Stored at -20 °C |
Anti-TRP1/TYRP1 Antibody | Millipore | MABC592 | Host/Isotype: Mouse IgG2a Species reactivity: Mouse/Human Dilution of 1:200 to use |
Anti-TRP2/DCT Antibody | Abcam | ab74073 | Host/Isotype: Rabbit IgG Species reactivity: Mouse/Human Dilution of 1:200 to use |
CHIR99021 | Stemgent | 04-0004 | Stock concentration 10 mM Final concentration 3 μM |
Cholera toxin | Sigma | C8052 | Stock concentration 0.3 mg/mL Final concentration 20 pM |
Cy3 Goat anti-Rabbit IgG (H+L) | Jackson Immunoresearch | 111-165-144 | Dilution of 1:500 to use |
DMEM (High glucose) | HyClone | SH30243.01 | Stored at 4 °C |
DMSO | Sigma | D2650 | Stored at RT |
FBS | Gibco | 10270-106 | Stored at -20 °C Heat-inactivated before use |
Gelatin | Sigma | G9391 | Stored at RT |
GFP-PURO plasmids (Mitf, Sox10, Pax3, Sox2, Sox9 and Snai2) | Hanheng Biological Technology Co., Ltd. | pHBLPm003198 pHBLPm001143 pHBLPm002968 pHBLPm002981 pHBLPm004348 pHBLPm000325 | Stored at -20 °C |
Hematoxylin | Abcam | ab220365 | Stored at RT |
Human EDN3 | American-Peptide | 88-5-10A | Stock concentration 100 μM Final concentration 0.1 μM |
Hydrocortisone | Sigma | H0888 | Stock concentration 100 µg/mL Final concentration 0.5 µg/mL |
L-DOPA | Sigma | D9628 | Stored at RT |
Lipofectamine 2000 | Invitrogen | 11668-019 | Transfection reagent, stored at 4 °C |
Masson-Fontana staining kit | Solarbio | G2032 | Stored at 4 °C |
Neutral balsam | Solarbio | G8590 | Stored at 4 °C |
Paraformaldehyde | Sigma | P6148 | Stored at RT |
PBS (-) | Gibco | C10010500BT | Stored at RT |
Phorbol 12-myristate 13-acetate (TPA) | Sigma | P8139 | Stock concentration 1 mM Final concentration 200 nM |
Polybrene | Sigma | H9268 | cationic polymeric transfection reagent; Stock concentration 8 μg/µL Final concentration 4 ng/µL |
Puromycin | Gibco | A11138-03 | Stored at -20 °C |
Recombinant human bFGF | Invitrogen | 13256-029 | Stock concentration 4 μg/mL Final concentration 10 ng/mL |
Recombinant human insulin | Sigma | I3536 | Stock concentration 10 mg/mL Final concentration 5 µg/mL |
Recombinant human SCF | R&D | 255-SC-010 | Stock concentration 200 μg/mL Final concentration 100 ng/mL |
RPMI-1640 | Gibco | 11875-093 | Stored at 4 °C |
Xylene | Sigma | 1330-20-7 | Stored at RT |