Ce protocole détaille une approche globale pour la culture, le séquençage et l’assemblage hybride de novo du génome des bactéries urinaires. Il fournit une procédure reproductible pour la génération de séquences génomiques complètes et circulaires utiles pour étudier les éléments génétiques chromosomiques et extrachromosomiques contribuant à la colonisation urinaire, à la pathogenèse et à la dissémination de la résistance aux antimicrobiens.
Les séquences complètes du génome fournissent des données précieuses pour la compréhension de la diversité génétique et des facteurs de colonisation uniques des microbes urinaires. Ces données peuvent inclure des éléments génétiques mobiles, tels que les plasmides et les phages extrachromosomiques, qui contribuent à la dissémination de la résistance aux antimicrobiens et compliquent davantage le traitement des infections des voies urinaires (IVU). En plus de fournir une résolution fine de la structure du génome, les génomes complets et fermés permettent des analyses comparatives et évolutives détaillées. La génération de génomes complets de novo a longtemps été une tâche difficile en raison des limites de la technologie de séquençage disponible. Le séquençage de nouvelle génération (NGS) à extrémité appariée produit des lectures courtes de haute qualité, ce qui donne souvent des assemblages de génome précis mais fragmentés. Au contraire, le séquençage des nanopores fournit de longues lectures de qualité inférieure conduisant normalement à des assemblages complets sujets aux erreurs. De telles erreurs peuvent entraver les études d’association à l’échelle du génome ou fournir des résultats d’analyse de variantes trompeurs. Par conséquent, les approches hybrides combinant des lectures courtes et longues sont apparues comme des méthodes fiables pour obtenir des génomes bactériens fermés très précis. Il est rapporté ici une méthode complète pour la culture de diverses bactéries urinaires, l’identification des espèces par séquençage du gène de l’ARNr 16S, l’extraction de l’ADN génomique (ADNg) et la génération de lectures courtes et longues par les plateformes NGS et Nanopore, respectivement. En outre, cette méthode décrit un pipeline bioinformatique d’algorithmes de contrôle de la qualité, d’assemblage et de prédiction de gènes pour la génération de séquences complètes annotées du génome. La combinaison d’outils bioinformatiques permet de sélectionner des données de lecture de haute qualité pour l’assemblage du génome hybride et l’analyse en aval. L’approche simplifiée pour l’assemblage hybride du génome de novo décrite dans ce protocole peut être adaptée à l’utilisation dans toute bactérie cultivable.
Le microbiome urinaire est un domaine de recherche émergent qui a brisé une idée fausse de plusieurs décennies selon laquelle les voies urinaires sont stériles chez les personnes en bonne santé. Les membres du microbiote urinaire peuvent servir à équilibrer l’environnement urinaire et à prévenir les infections des voies urinaires (IVU)1,2. Les bactéries uropathogènes envahissent les voies urinaires et emploient divers mécanismes de virulence pour déplacer le microbiote résident, coloniser l’urothélium, échapper aux réponses immunitaires et contrer les pressionsenvironnementales 3,4. L’urine est un milieu relativement limité en nutriments caractérisé par une osmolarité élevée, une disponibilité limitée en azote et en glucides, une faible oxygénation et un faible pH5,6,7. L’urine est également considérée comme antimicrobienne, composée de fortes concentrations d’urée inhibitrice et de peptides antimicrobiens tels que la cathélicidine humaine LL-378. L’étude des mécanismes utilisés par les bactéries résidentes et les uropathogènes pour coloniser les voies urinaires est essentielle pour mieux comprendre la santé des voies urinaires et développer de nouvelles stratégies de traitement des infections urinaires. De plus, à mesure que l’échec des thérapies antimicrobiennes de première ligne devient de plus en plus fréquent, il est de plus en plus important de surveiller la dissémination d’éléments génétiques mobiles porteurs de déterminants de la résistance aux antimicrobiens au sein des populations de bactéries urinaires9,10.
Pour étudier les génotypes et les phénotypes des bactéries urinaires, leur culture réussie et le séquençage ultérieur du génome entier (WGS) sont impératifs. Des méthodes dépendantes de la culture sont nécessaires pour détecter et identifier les microbes viables dans les échantillons d’urine11. La culture d’urine clinique standard consiste à plaquer l’urine sur une gélose à 5 % de sang de mouton (BAP) et une gélose MacConkey et à incuber aérobiement à 35 °C pendant 24 h12. Cependant, avec un seuil de détection de ≥105 UFC/mL13, de nombreux membres du microbiote urinaire ne sont pas rapportés par cette méthode. Les techniques de culture améliorées telles que la culture quantitative améliorée de l’urine (EQUC)11 utilisent diverses combinaisons de différents volumes d’urine, temps d’incubation, milieux de culture et conditions atmosphériques pour identifier les microbes couramment omis par la culture d’urine standard. Décrit dans ce protocole est une version modifiée de la CQE, appelée ici protocole de culture d’urine améliorée modifiée, qui permet la culture de diverses bactéries urinaires et uropathogènes en utilisant des milieux sélectifs et des conditions atmosphériques optimales, mais n’est pas intrinsèquement quantitative. L’isolement réussi des bactéries urinaires permet l’extraction de l’ADN génomique (ADNg) pour le WGS en aval et l’assemblage du génome.
Les assemblages de génomes, en particulier les assemblages complets, permettent de découvrir des facteurs génétiques susceptibles de contribuer à la colonisation, au maintien de niches et à la virulence du microbiote résident et des bactéries uropathogènes. Les ébauches d’assemblages de génomes contiennent un nombre diversifié de séquences contiguës (contigs) qui peuvent contenir des erreurs de séquençage et manquer d’informations d’orientation. Dans un assemblage complet du génome, l’orientation et la précision de chaque paire de bases ont été vérifiées14. En outre, l’obtention de séquences complètes du génome permet de mieux comprendre la structure du génome, la diversité génétique et les éléments génétiques mobiles15. Des lectures courtes à elles seules peuvent identifier la présence ou l’absence de gènes importants, mais peuvent ne pas identifier leur contextegénomique 16. Grâce aux technologies de séquençage à lecture longue telles qu’Oxford Nanopore et PacBio, la génération d’assemblages fermés de novo de génomes bactériens ne nécessite plus de méthodes fastidieuses telles que la fermeture manuelle d’assemblages de novo par PCRmultiplex 17,18. La combinaison du séquençage à lecture courte de nouvelle génération et des technologies de séquençage à lecture longue Nanopore permet la génération facile d’assemblages de génomes bactériens précis, complets et fermés à des coûts relativement faibles19. Le séquençage à lecture courte produit des assemblages de génome précis mais fragmentés composés généralement d’une moyenne de 40 à 100 contigs, tandis que le séquençage nanopore génère de longues lectures d’environ 5 à 100 kb de longueur qui sont moins précises mais peuvent servir d’échafaudages pour joindre les contigs et résoudre la synténie génomique. Les approches hybrides utilisant à la fois des technologies à lecture courte et à lecture longue peuvent produire des génomes bactériens précis et complets19.
Décrit ici est un protocole complet pour l’isolement et l’identification des bactéries de l’urine humaine, l’extraction de l’ADN génomique, le séquençage et l’assemblage complet du génome à l’aide d’une approche d’assemblage hybride. Ce protocole met particulièrement l’accent sur les étapes nécessaires pour modifier correctement les lectures générées par le séquençage à lecture courte et longue pour l’assemblage précis d’un chromosome bactérien fermé et d’éléments extrachromosomiques tels que les plasmides.
Le protocole complet d’assemblage du génome hybride décrit ici offre une approche simplifiée pour la culture réussie de divers microbiotes urinaires et uropathogènes, et l’assemblage complet de leurs génomes. Le succès des WGS des génomes bactériens commence par l’isolement de microbes divers et parfois fastidieux afin d’extraire leur ADN génomique. À ce jour, les protocoles de culture d’urine existants n’ont pas la sensibilité nécessaire pour détecter de nombreuses espèces urinaires ou impliquent des approches longues et étendues qui nécessitent un temps et des ressourcesprolongés 11. L’approche de culture d’urine améliorée modifiée décrite offre un protocole simplifié mais complet pour l’isolement réussi des bactéries appartenant à 17 genres urinaires courants, y compris les espèces commensales potentiellement pathogènes ou bénéfiques, et les bactéries aérobies ou anaérobies facultatives et obligatoires. Cela fournit à son tour le matériel de départ nécessaire pour le séquençage et l’assemblage précis des génomes bactériens et pour les expériences phénotypiques critiques, qui contribuent à la compréhension de la santé et de la maladie urinaires. De plus, cette approche de culture modifiée permet un diagnostic clinique plus précis des micro-organismes viables présents dans les échantillons d’urine et permet leur biobanque pour de futures études génomiques. Cependant, ce protocole n’est pas sans limites. Il peut nécessiter de longs temps d’incubation selon l’organisme ainsi que l’utilisation de ressources telles qu’une chambre d’hypoxie ou des incubateurs contrôlés qui peuvent ne pas être facilement disponibles. L’utilisation de GasPaks anaérobies offre une solution alternative, mais ceux-ci sont coûteux et ne produisent pas toujours un environnement durable et contrôlé. Enfin, le biais de culture ainsi que la diversité des échantillons peuvent permettre à des organismes et des uropathogènes particuliers de surpasser les bactéries fastidieuses. Malgré ces limites, une culture de diverses bactéries urinaires est rendue possible par cette approche.
Le séquençage génomique a gagné en popularité avec l’avancement des technologies de séquençage de nouvelle génération qui ont considérablement augmenté à la fois le rendement et la précision des données de séquençage14,15. Couplées au développement d’algorithmes pour le traitement des données et l’assemblage de novo, les séquences complètes du génome sont à portée de main de scientifiques novices et experts15,45. La connaissance de l’organisation globale du génome fournie par les génomes complets offre des informations évolutives et biologiques importantes, y compris la duplication des gènes, la perte de gènes et le transfert horizontal de gènes14. De plus, les gènes importants pour la résistance aux antimicrobiens et la virulence sont souvent localisés sur des éléments mobiles, qui ne sont généralement pas résolus dans les assemblages de génomesprovisoires 15,16.
Le protocole présenté dans le présent document suit une approche hybride pour la combinaison de données de séquençage provenant de plates-formes à lecture courte et à lecture longue afin de générer des assemblages complets du génome. Bien que axée sur les génomes bactériens urinaires, cette procédure peut être adaptée à diverses bactéries provenant de diverses sources d’isolement. Les étapes critiques de cette approche comprennent le suivi d’une technique stérile adéquate et l’utilisation de milieux et de conditions de culture appropriés pour l’isolement des bactéries urinaires pures. En outre, l’extraction d’ADNg intact à haut rendement est essentielle pour générer des données de séquençage exemptes de lectures contaminantes susceptibles d’entraver le succès de l’assemblage. Les protocoles de préparation de bibliothèque ultérieurs sont essentiels pour la génération de lectures de qualité d’une longueur et d’une profondeur suffisantes. Par conséquent, il est extrêmement important de manipuler l’ADNg avec soin lors de la préparation de la bibliothèque pour le séquençage à lecture longue en particulier, car le plus grand avantage de cette technologie est la génération de lectures longues sans limite théorique de longueur supérieure. Des sections sont également décrites pour le contrôle de la qualité (CQ) approprié des lectures de séquençage qui élimine les données bruyantes et améliore les résultats d’assemblage.
Malgré le succès de l’isolement de l’ADN, de la préparation de la bibliothèque et du séquençage, la nature de l’architecture génomique de certaines espèces peut encore constituer un obstacle à la génération d’un assemblage de génome fermé45,46. Les séquences répétitives compliquent souvent le calcul de l’assemblage et malgré de longues données de lecture, ces régions peuvent être résolues avec une faible confiance, voire pas du tout. Les lectures longues doivent donc être en moyenne plus longues que la plus grande région de répétition du génome ou la couverture doit être élevée (>100x)19. Certains génomes peuvent rester incomplets et nécessiter des approches manuelles pour être complétés. Néanmoins, les génomes incomplets assemblés hybrides sont généralement composés de moins de contigs que les génomes brouillons à lecture courte. Il peut être utile d’ajuster les paramètres par défaut de l’algorithme d’assemblage ou de suivre des seuils plus stricts pour le contrôle qualité en lecture. Alternativement, une approche suggérée consiste à mapper les lectures longues aux régions incomplètes à la recherche de preuves du chemin d’assemblage le plus probable, puis à confirmer le chemin en utilisant la PCR et le séquençage de Sanger de la région amplifiée. La cartographie des lectures à l’aide de Minimap2 est suggérée et Bandage offre un outil utile pour la visualisation des lectures cartographiées le long des contigs assemblés fournissant des preuves de la liaison contig47.
Un défi supplémentaire pour générer des génomes complets réside dans la familiarité et le confort avec les outils de ligne de commande. De nombreux outils bioinformatiques sont développés pour offrir des opportunités de calcul à tout utilisateur; cependant, leur utilisation repose sur une compréhension des bases d’UNIX et de la programmation. Ce protocole vise à fournir des instructions suffisamment détaillées pour permettre aux personnes sans expérience préalable de la ligne de commande de générer des assemblages de génomes fermés et de les annoter.
The authors have nothing to disclose.
Nous remercions le Dr Moutusee Jubaida Islam et le Dr Luke Joyce pour leurs contributions à ce protocole. Nous tenons également à remercier l’Université du Texas au Dallas Genome Center pour ses commentaires et son soutien. Ce travail a été financé par la Welch Foundation, numéro de prix AT-2030-20200401 à N.J.D., par les National Institutes of Health, numéro de prix R01AI116610 à K.P., et par la chaire Felecia et John Cain en santé des femmes, détenue par P.E.Z.
Equipment: | |||
Bioanalyzer 2100 | Agilent | G29398A | Optional but recommended |
Centrifuge | Eppendorf | — | Any centrifuge for spinning conicals and microcentrifuge tubes (e.g. Models 5810R/5424R) |
Electrophoresis | BioRad Laboratories | 1645070 | |
Gel Imaging System | BioRad Laboratories | ChemiDoc models | |
Incubator | ThermoFisher Scientific | — | Any CO2 Incubator (e.g. Thermo Forma model 3110) |
Magnetic Rack | New England BioLabs | S15095 | 12-tube rack |
MinION | Oxford Nanopore Technologies | — | |
Nanodrop | ThermoFisher Scientific | ND-ONE-W | |
NextSeq 500 | Illumina | SY-415-1002 | Other Illumina models are acceptable |
Plate Reader | BioTek | — | Synergy H1 |
Qubit fluorometer | ThermoFisher Scientific | Q33238 | |
Rotator | Benchmark Scientific | H2024 | |
Thermocycler | ThermoFisher Scientific | — | Any thermocycler for PCR reactions (e.g. ProFlex PCR system) |
Materials: | |||
10X Phosphate Buffered Saline (PBS) | Fisher Scientific | BP3991 | |
10X TBE buffer | — | — | 1M Tris,1M Boric Acid,0.2M EDTA (pH 8.0) |
1429R primer | Sigma Aldrich (Custom oligos) | — | GGTTACCTTGTTACGACTT |
1kb Ladder | VWR | 101228-494 | |
1M Tris-Cl (pH 7.5) | ThermoFisher Scientific | 15567027 | |
6x Loading dye | Fisher Scientific | NC0783588 | |
8F primer | Sigma Aldrich (Custom oligos) | — | AGAGTTTGATCCTGGCTCAG |
Agar | Fisher Scientific | BP1423-2 | |
Agarose | BioRad Laboratories | 63001 | |
AMPure XP Beads | Beckman Coulter | A63880 | |
Anaerobe Pouch System – GasPak EZ | BD Diagnostic Systems | B260683 | |
Boric Acid | Fisher Scientific | A73-500 | |
Brain Heart Infusion Broth | BD Diagnostic Systems | 212304 | |
CDC Anaerobe 5% Sheep Blood Agar | BD Diagnostic Systems | L007357 | |
CHROMagar Orientation | BD Diagnostic Systems | PA-257481.04 | |
DNeasy Blood & Tissue | QIAGEN | 69504 | |
DreamTaq Master Mix | ThermoFisher Scientific | K1081 | |
Dry Anaerobic Indicator Strips | BD Diagnostic Systems | 271051 | |
EDTA | Fisher Scientific | S311-500 | |
Ethanol 200 Proof | Sigma Aldrich | E7023 | For molecular biology |
Ethidium Bromide | ThermoFisher Scientific | BP130210 | |
Flow cell priming kit | Oxford Nanopore Technologies | EXP-FLP002 | |
Flow cell wash kit | Oxford Nanopore Technologies | EXP-WSH003 | |
Gel Extraction Miniprep Kit | BioBasic | BS654 | |
Ligation sequencing kit | Oxford Nanopore Technologies | SQK-LSK109 | |
Lysozyme | Research Products International Corp | L381005.05 | |
Mutanolysin | Sigma Aldrich | M9901-5KU | |
Native barcoding expansion 1-12 | Oxford Nanopore Technologies | EXP-NBD104 | |
NEB Blunt/TA Ligase Master Mix | New England BioLabs | M0367L | |
NEBNext FFPE DNA Repair Mix | New England BioLabs | M6630L | |
NEBNext quick ligation buffer | New England BioLabs | B6058S | |
NEBNext Ultra II End repair / dA-tailing module | New England BioLabs | E7546L | |
Nextera DNA CD Indexes | Illumina | 20018708 | |
Nextera DNA Flex Library Prep – (M) Tagmentation | Illumina | 20018705 | |
Nuclease-free water | Sigma Aldrich | W4502 | |
Qubit 1X dsDNA HS Assay Kit | ThermoFisher Scientific | Q33230 | |
Qubit Assay Tubes | ThermoFisher Scientific | Q32856 | |
Quick T4 DNA Ligase | New England BioLabs | E6056L | |
R9 Flow cell | Oxford Nanopore Technologies | FLO-MIN106D | |
RNase A | ThermoFisher Scientific | EN0531 | |
Sheep Blood | Hemostat Laboratories | DS13250 | |
TE buffer | — | — | 10mM Tris, 1mM EDTA (pH 8.0) |
Triton X-100 | Sigma Aldrich | T8787 | |
Tryptic Soy Broth | BD Diagnostic Systems | 211825 | |
Software & Bioinformatic Tools: | |||
Bandage | — | — | https://rrwick.github.io/Bandage/ |
Center for Genomic Epidemiology | — | — | http://www.genomicepidemiology.org/ |
CLC Genomics Workbench 12 | QIAGEN | — | |
CRISPRcasFinder | — | — | https://crisprcas.i2bc.paris-saclay.fr/ |
FastQC | — | — | https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ |
Geneious Prime | Geneious | — | |
gVolante (BUSCO) | — | — | https://gvolante.riken.jp/ |
Kbase Prokka Wrapper | — | — | https://kbase.us/applist/apps/ProkkaAnnotation/annotate_contigs/release |
Minimap2 | — | — | https://github.com/lh3/minimap2 |
MinKNOW | Oxford Nanopore Technologies | — | |
NanoFilt | — | — | https://github.com/wdecoster/nanofilt |
NanoStat | — | — | https://github.com/wdecoster/nanostat |
PHASTER | — | — | https://phaster.ca/ |
Prokka | — | — | https://github.com/tseemann/prokka |
QUAST | — | — | http://quast.sourceforge.net/quast |
Trim Galore | — | — | https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ |
Trimmomatic | — | — | http://www.usadellab.org/cms/?page=trimmomatic |
Unicycler | — | — | https://github.com/rrwick/Unicycler#necessary-read-length |