Hier stellen wir ein Protokoll für das Screening potenzieller Transkriptionsfaktoren zur Verfügung, die an der Entwicklung dendritischer Zellen (DC) beteiligt sind, unter Verwendung der lentiviralen Transduktion von shRNA, um stabile Knockdown-Zelllinien für die In-vitro-DC-Differenzierung zu erhalten.
Dendritische Zellen (DCs) sind wichtige Antigen-präsentierende Zellen, die angeborene und adaptive Immunantworten verbinden. DCs sind heterogen und können in konventionelle DCs (cDCs) und plasmazytoide DCs (pDCs) unterteilt werden. cDCs ist darauf spezialisiert, naiven T-Zellen Antigene zu präsentieren und zu aktivieren. Auf der anderen Seite können pDCs während einer Virusinfektion große Mengen an Typ-I-Interferonen (IFN-I) produzieren. Die Spezifizierung von DCs erfolgt in einem frühen Stadium von DC-Vorläufern im Knochenmark (BM) und wird durch ein Netzwerk von Transkriptionsfaktoren (TFs) definiert. Zum Beispiel drücken CDCs ID2 hoch aus, während pDCs E2-2 stark ausdrücken. Da immer mehr Teilmengen von DCs identifiziert werden, besteht ein wachsendes Interesse daran, spezifische TFs zu verstehen, die die DC-Entwicklung steuern. Hier etablieren wir eine Methode zum Screening von TFs, die für die DCs-Differenzierung in vitro entscheidend sind, indem lentivirus-tragende kurzhaarnadelige RNA (shRNA) in eine immortalisierte hämatopoetische Stamm- und Vorläuferzelllinie (iHSPCs) abgegeben wird. Nach der Selektion und In-vitro-Differenzierung werden cDC- und pDC-Potential der stabilen Knockdown-Zelllinien mittels Durchflusszytometrie analysiert. Dieser Ansatz bietet eine Plattform, um Gene zu identifizieren, die möglicherweise das DC-Schicksal von Vorläufern in vitro bestimmen.
DCs sind wichtige Regulatoren der angeborenen und adaptiven Immunität1. DCs werden hauptsächlich in zwei funktional unterschiedliche Populationen eingeteilt, nämlich pDCs und cDCs. Darüber hinaus umfassen cDCs zwei Untergruppen, nämlich Typ I und Typ II cDCs oder cDC1s bzw. cDC2s2s. pDCs, die BST2, Siglec-H und mittlere CD11c-Spiegel in Mäusen exprimieren3,4, sind die Zellen, die während Entzündungen und Virusinfektionen große Mengen an IFN-I sezernieren können5. Aufgrund ihrer robusten IFN-I-produzierenden Fähigkeit stehen sie auch im Verdacht, eine Schlüsselrolle beim Fortschreiten von Autoimmunerkrankungen, einschließlich des systemischen Lupus erythematodes (SLE)6, zu spielen. cDC1s, definiert durch die Oberflächenexpression von XCR1, CD8a, CLEC9A und CD103 in Mäusen7, sind auf die Aktivierung und Polarisation von zytotoxischen CD8+ T-Zellen (CTLs) durch die Antigen-Kreuzpräsentation spezialisiert und initiieren dadurch eine Typ-I-Immunität als Reaktion auf intrazelluläre Erreger und Krebs8,9. Auf der anderen Seite können cDC2s, die CD11b und CD172α (auch bekannt als Sirpα) sowohl bei Menschen als auch bei Mäusen exprimieren, CD4+ T-Zellen aktivieren und die Typ-II-Immunantwort gegen Allergene und Parasiten10 fördern sowie die Typ-III-Immunität nach extrazellulärer Bakterien und Mikrobiota-Erkennung modulieren11,12.
Die Diversifikation von DCs wird durch eine Gruppe von TFs aus hämatopoetischen Stamm- und Vorläuferzellen (HSPCs) im BM bestimmt. E2-2 (kodiert von Tcf4) ist ein Hauptregulator für die Differenzierung und Funktion von pDCs13,14. Im Gegensatz dazu treibt der Inhibitor der DNA-Bindung 2 (ID2) die cDC-Spezifikation voran und hemmt die pDC-Entwicklung durch Blockierung der E-Proteinaktivität15. Darüber hinaus erfordert die Entwicklung von cDC1 IRF8 und BATF3, während die Differenzierung von cDC2s stark von IRF416 abhängt. Neuere Arbeiten haben die Heterogenität von pDCs17 und cDCs und deren transkriptioneller Regulation untersucht18. Aufgrund der Komplexität des DC-Netzwerks besteht ein unerfüllter Bedarf, eine Plattform einzurichten, um andere TFs zu identifizieren, die die Entwicklung und Funktionalität von DCs steuern.
Hier verwendeten wir einen iHSPC, der durch Exprimieren von Östrogen-regulierter Kerntranslokation von Hoxb8 in BM-Zellen (auch hoxb8-FL-Zellen genannt) erzeugt wurde19. iHSPCs können sich in Gegenwart von β-Östradiol und Flt3-Liganden (FL) vermehren und in einem undifferenzierten Stadium verbleiben, während sie sich in Gegenwart von FL nach Abzug von β-Östradiol19 in verschiedene DC-Typen zu differenzieren beginnen. Basierend auf dieser Eigenschaft können wir Interessante Gene im Vorläuferstadium niederschlagen, gefolgt von der Untersuchung der Wirkung auf die In-vitro-Differenzierung von pDCs und cDCs. Daher ist diese Methode ein leistungsfähiges Werkzeug, um die Gene zu entdecken, die die Entwicklung und Funktion von DCs regulieren.
Lentivirus-basierte shRNA-Vektoren werden häufig für das Gen-Silencing durch virale Transduktion in Zellen verwendet und ermöglichen eine stabile Integration in das Wirtsgenom. Es müssen jedoch verschiedene Transduktionseffizienzen in verschiedenen Zelltypen berücksichtigt werden, und es wurden eine Reihe von Ansätzen verfolgt, um dieses Problem zu lösen.
Polybren ist ein polykationisches Polymer, das die Ladungen auf der Zellmembran neutralisieren kann, wodurch die Bindung des Virions…
The authors have nothing to disclose.
Wir sind dankbar für die technische Unterstützung von Dr. Tz-Ling Chen. Wir danken der National RNAi Core Facility (Academia Sinica, Taiwan) für die Bereitstellung von shRNA Lentivirus (http://rnai.genmed.sinica.edu.tw). Diese Arbeit wurde vom Ministerium für Wissenschaft und Technologie, Taiwan (MOST 108-2320-B-002-037-MY3 und MOST 109-2320-B-002-054-MY3) unterstützt.
Antibodies | |||
APC/Cy7 anti-mouse CD11c Antibody | Biolegend | 117324 | (Clone: N418) |
FITC anti-mouse/human CD11b Antibody | Biolegend | 101206 | (Clone: M1/70) |
PE anti-mouse/human B220 Antibody | Biolegend | 103208 | (Clone: RA3-6B2) |
Cell culture | |||
1.5 mL Micro tube | ExtraGene | TUBE-170-C | |
12-well tissue culture-treated plate | Falcon | 353043 | |
Fetal bovine serum (FBS) | Corning | 35-010-CV | |
RPMI 1640 medium | gibco | 11875-085 | |
Reagent | |||
β-estradiol | Sigma-Aldrich | E2758-250MG | |
β-mercaptoethanol (β-ME) | Sigma-Aldrich | M6250 | |
FACS buffer | home-made | Formula: 1xPBS+0.5 %FBS+0.1%NaN3 | |
Flt3 ligand (FL) | home-made | ||
Polybrene | Sigma-Aldrich | TR-1003-G | |
Puromycin | Invivogen | ant-pr-1 | |
TRIsure | BIOLINE | BIO-38032 | |
shRNA (Taregt sequence/clone ID) | Company | ||
shId2 (GCTTATGTCGAATGATAGCAA/TRCN0000054390) | The RNAi Consortium (TRC) | ||
shLacZ (CGCGATCGTAATCACCCGAGT/TRCN0000072224) | The RNAi Consortium (TRC) | ||
shTcf4 (GCTGAGTGATTTACTGGATTT/TRCN0000012094) | The RNAi Consortium (TRC) |