Summary

用于登德里脊柱研究的串行块面扫描电子显微镜 (SBEM)

Published: October 02, 2021
doi:

Summary

连续块面扫描电子显微镜 (SBEM) 应用于图像和分析穆林海马体中的树突状脊柱。

Abstract

三维电子显微镜(3D EM)提供了分析具有纳米级分辨率的树突脊柱形态参数的可能性。此外,树突状脊柱的某些特征,如脊柱体积和突触后密度 (PSD) (表示突触的突触后部分)、突触前终端的存在以及光滑的内质视网膜或非典型形式的 PSD(例如多内侧脊柱),只能使用 3D EM 进行观察。通过使用串行块面扫描电子显微镜 (SBEM),可以比执行传统串行分割时更容易、更可重复的方式获得 3D EM 数据。在这里,我们展示如何准备小鼠海马样本进行SBEM分析,以及如何将此协议与树突状脊柱的免疫荧光研究相结合。轻度固定灌注使我们能够在大脑的一半进行轻度显微镜免疫荧光研究,而另一半则为SBEM做好准备。这种方法减少了用于研究的动物数量。

Introduction

中枢神经系统中的大部分兴奋突触位于树突状脊柱上 – 神经元膜的小突起。这些突起形成密闭生化隔间,控制细胞内信号转导。树突状脊柱和突触的结构可塑性与突触功效的功能变化密切相关,突触功效的变化是学习和记忆1、2等重要过程的基础。需要注意的是,电子显微镜 (EM) 是唯一能够确定树突状脊柱是否有突触前输入的技术。EM 分辨率还需要研究超结构细节,如后合成密度 (PSD) 的形状,代表突触的后合成部分,或树突脊柱的尺寸,以及轴突的大小和形状。此外,通过 EM,可以可视化突触及其周围环境。

由于成像和计算技术的进步,可以重建整个神经回路。体积电子显微镜技术,如串行节传输电子显微镜(sSTEM)、串行块面扫描电子显微镜(SBEM)和聚焦离子束扫描电子显微镜(FIB-SEM)等,常用于神经元电路重建3。

在我们的研究中,SBEM方法成功地用于研究小鼠海马和有机性脑切片4,5的样本中树突状脊柱和PSD的结构可塑性。SBEM基于扫描电子显微镜室6、7、8、9内安装微型超微缩微切除器。对样品块顶部进行成像,然后由超微切除器在指定深度切割样品,露出新的块面,再次成像,然后重复过程 8。因此,仅留下块面图像,而已切割的切片则丢失为碎屑。这就是为什么SBEM被称为破坏性技术,这意味着它不可能再次映像同一个地方。但是,破坏性块上方法的优点是它们不会遭受扭曲问题和部分丢失,这些问题和部分损失会显著影响数据质量和数据分析3。此外,SBEM还提供了在高分辨率3下成像一个相对较大的视场(>0.5毫米×0.5毫米)的可能性。

要使用 SBEM,由于用于获取图像的背散射电子探测器,因此必须按照专用的、高度对比的协议准备样品。我们在这里展示如何根据Dierinck10(国家显微镜和成像研究中心(NCMIR)方法开发的程序,使用20世纪80年代8、11年代开发的减少的硫化硫化物(rOTO)污渍来进行样品制备。此外,我们引入了两步固定方法,采用温和的固定灌注,允许使用相同的大脑进行轻显微镜和SBEM的免疫荧光研究。

在协议中,小鼠大脑主要用温和的固定剂固定,然后切成两半,一个半球固定后,准备免疫荧光(IF),而另一个半球用于EM研究(图1)。

Figure 1
图1。树突脊柱工作流程的示意图,为 SBEM 分析做准备。 老鼠被牺牲,并灌注了温和的原发性固定剂。大脑被切成两半,一个半球被免疫荧光(IF)专用固定,冷冻保护,使用低温统计器切片,并处理IF研究,而另一个半球被固定后与EM固定,切片与振动器和准备EM研究。用于SBEM研究的大脑切片进行了对比,平嵌在树脂中,然后海马的CA1区域被安装到针脚上,并用SBEM成像(图1)。视频中展示了黄色框中突出显示的协议部分。 请单击此处查看此图的较大版本。

Protocol

这项研究是根据Nencki研究所的指导方针和地方道德委员会的许可进行的。这些研究是根据欧洲共同体理事会1986年11月24日指令(86/609/EEC)、波兰《动物保护法》进行的,并得到了华沙第一个地方道德委员会的批准。尽了一切努力尽量减少使用的动物数量及其痛苦。 注意:以下所有程序必须在实验室烟雾罩中执行。由于使用的试剂具有危险性。需要采取个人安全措施,如手套?…

Representative Results

使用上述高对比度方法,可以获得小鼠脑组织的良好分辨率图像。SBEM 技术提供的大量视野有助于精确选择感兴趣的区域。海马CA1区域的大图像被采取测量地层径向(SR)的长度(图2A),并设置成像精确在中心(图2B)。接下来,获取了图像堆,并细分了感兴趣的对象,如树突、树突、突触的后合成密度(图2C,D)。…

Discussion

2010年10月,迪林克描述的主要NCMIR方法有许多变化。基本原则保持不变,但根据所研究的材料类型,将实施轻微更改。以前曾描述过,不同的树脂可用于嵌入标本的SBEM,例如在植物的情况下,Spurr的树脂是首选的,因为它的低粘度,允许更好地渗透通过细胞壁22,23。此外,各种缓冲可用于固定(例如,可可二甲酸酯缓冲液、HEPES 或磷?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

SBEM成像、光显微镜成像和电子显微镜样品制备是利用作为Nencki实验生物学研究所成像核心设施的成像组织和功能实验室的设备进行的。

为了准备图1,使用了鼠标(Souris_02)和 https://smart.servier.com/ 小瓶的图像。

这项工作得到了国家科学中心(波兰)授予KR的赠款Opus(UMO-2018/31/B/NZ4/01603)的支持。

Materials

Anesthetic:
Ketamine/xylazine mixture (Ketamina/Sedazin) Biowet Pulawy, Pulawy, Poland
Sodium pentobarbital (Morbital) Biowet Pulawy, Pulawy, Poland
Fixatives:
Glutaraldehyde (GA) Sigma-Aldrich,St. Louis, MI, USA G5882 Grade I, 25% in H2O, specially purified for use as an electron microscopy fixative
Hydrochloric acid (HCl) POCH, Gliwice, Poland 575283115 pure p.a.
Paraformaldehyde (PFA) Sigma-Aldrich,St. Louis, MI, USA 441244 prilled, 95%
Phosphate buffered saline (PBS), pH 7.4 Sigma-Aldrich,St. Louis, MI, USA P4417-50TAB tablets
Sodium hydroxide (NaOH) Sigma-Aldrich,St. Louis, MI, USA S5881 reagent grade, Equation98%, pellets (anhydrous)
Sodium phosphate dibasic (Na2HPO4) Sigma-Aldrich,St. Louis, MI, USA S3264
Sodium phosphate monobasic (NaH2PO4) Sigma-Aldrich,St. Louis, MI, USA S3139
Perfusion:
Large blunt/blunt curved scissors (~14.5 cm) Fine Science Tools, Foster City, CA, USA 14519-14
Micro-spatula (double 2" flat ends, one rounded, one tapered to 1/8") Fine Science Tools, Foster City, CA, USA 10091-12
Needle tip, 15 GA, blunt (perfusion needle) KD Medical GmbH Hospital Products, Berlin, Germany KD-FINE 900413 1.80 x 40 mm
Pair of fine (Graefe) tweezers Fine Science Tools, Foster City, CA, USA 11050-10
Perfusion pump Lead Fluid BQ80S
Plastic vials Profilab, Warsaw, Poland 534.02 plastic vials with blue cap for tissue storage, 20 ml, 31 x 48 mm
Straight iris scissors (~9 cm) Fine Science Tools, Foster City, CA, USA 14058-11
Brain slices preparation for EM:
12-well plate NEST, Rahway, NJ, USA 712001
Cyanoacrylic glue Fenedur, Montevideo, Uruguay
Glass vials Electron Microscopy Sciences, Hatfield, PA, USA 72632 20 ml Scintillation Vial, a pack of 100
Pasteur pipette VWR, Radnor, PA, USA 612-4545 LDPE, disposable, 7.5 ml
Razor blade Wilkinson Sword, London, UK Classic double edge safety razor blades
Scalpel blade Swann-Morton, Sheffield, UK No. 20
Vibratome Leica Microsystems, Vienna, Austria Leica VT1000 S
Brain slices preparation for IF:
96-well plate NEST, Rahway, NJ, USA 701101
Criostat Leica Microsystems, Vienna, Austria Leica CM 1950
Ethylene glycol Bioshop, Burlington, Canada ETH001
Low-profile disposable blade 819 Leica Biosystems Inc., USA 14035838925
Scalpel blade Swann-Morton, Sheffield, UK No. 20
Sodium azide (NaN3) POCH, Gliwice, Poland 792770426
Sucrose POCH, Gliwice, Poland 772090110
Tissue freezing medium for cryosectioning, OCT-Compound Leica Biosystems, Switzerland 14020108926
Immunostaining:
24-well plate NEST, Rahway, NJ, USA 702001
Anti-Post Synaptic Density Protein 95 Antibody Merck-Millipore, Burlington, MA, USA MAB1598
Confocal microscope Zeiss, Göttingen, Germany Zeiss Spinning Disc microscope (63 × oil objective, NA 1.4, pixel size 0.13 µm × 0.13 µm)
Cover slide Menzel Glaser, Braunschweig, Germany B-1231 24 x 60 mm
Donkey anti-Mouse IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 555 Invitrogen, Carlsbad, CA, USA A31570
Fluoromount-G Mounting Medium, with DAPI Invitrogen, Carlsbad, CA, USA 00-4959-52
Microscope slide Thermo Scientific, Waltham, MA, USA AGAA00008 SuperFrost
Normal donkey serum (NDS) Jackson ImmunoResearch Laboratories, West Grove, PA, USA 017-000-121
Shaker JWElectronic, Warsaw, Poland KL-942
TritonT X-100 Reagent Grade Bioshop, Burlington, Canada TRX506
Electron microsocpy sample preparation
Potassium hexacyanoferrate(II) trihydrate POCH, Gliwice, Poland 746980113
Aclar 33C Film Electron Microscopy Sciences, Hatfield, PA, USA 50425 Fluoropolymer Film embedding sheet
DMP-30, 2,4,6-Tris(dimethylaminomethyl)phenol Sigma-Aldrich,St. Louis, MI, USA T58203 Epoxy embedding medium accelerator
Durcupan ACM single component A, M Sigma-Aldrich,St. Louis, MI, USA 44611 Durcupan ACM single component A, M epoxy resin
Durcupan ACM single component B Sigma-Aldrich,St. Louis, MI, USA 44612 Durcupan ACM single component B, hardener 964
Durcupan ACM single component D Sigma-Aldrich,St. Louis, MI, USA 44614 Durcupan ACM single component D , plasticizer
Ethyl alcohol absolute POCH, Gliwice, Poland 64-17-5 Ethyl alcohol absolute 99.8 % pure P.A.-BASIC
Genlab laboratory oven Wolflabs, York, UK Mino/18/SS Oven Genlab MINO/18/SS 18l volume, no fan circulation, no digital display, standard temperature gradient, standard recovery rate, no timer, 250°C maximum temperature, 240V electrical supply
L-Aspartic acid Sigma-Aldrich,St. Louis, MI, USA A-9256 reagent grade, Equation98% (HPLC)
Lead (II) nitrate Sigma-Aldrich,St. Louis, MI, USA 467790 Equation99.95% trace metals basis
Osmium tetroxide Sigma-Aldrich,St. Louis, MI, USA 75632 for electron microscopy, 4% in H2O
pH meter Elmetron, Zabrze, Poland CP-5-5
Rotator BioSan, Józefów, Poland Multi Bio RS-24 rotator Multi Bio RS-24
Sodium hydroxide (NaOH) Sigma-Aldrich,St. Louis, MI, USA S5881 reagent grade, Equation98%, pellets (anhydrous)
Sunflower mini shaker Grant bio, Shepreth,UK PD-3D
Syringe filter Millipore, Burlington, MA, USA SLGP033NB 0,22 µm pore size
Thiocarbohydrazide Sigma-Aldrich,St. Louis, MI, USA 88535 purum p.a., for electron microscopy, Equation99.0% (N)
Uranyl acetate Serva, Heidelberg, Germany 77870 Uranyl acetate·2H2O, research grade
Water bath WSL, Swietochlowice, Poland LWT
Specimen mounting for SBEM
96-well culture plate VWR, Radnor, PA, USA 734-2782 96-well plates, round bottom, non treated
AM Gatan 3View stub handling tweezers Micro to Nano, Haarlem, Netherlands
Netherlands
50-001521
Binocular OPTA-TECH, Warsaw, Poland X2000
Conductive glue Chemtronics, Georgia, USA CW2400 conductive eopxy
Gatan 3View sample pin stubs Micro to Nano, Haarlem, Netherlands
Netherlands
10-006003
Parafilm Sigma-Aldrich,St. Louis, MI, USA P7793 roll size 20 in. × 50 ft
Pelco conductive silver paint Ted Pella, Redding, CA, USA 16062-15 PELCO® Conductive Silver Paint, 15g
Razor blades double edge Electron Microscopy Sciences, Hatfield, PA, USA 72000 Stainless Steel "PTFE" coated. PERSONNA brand .004" thick, wrapped individually, 250 blades in a box.
Scanning Electron Microscope Zeiss, Oberkochen, Germany Sigma VP with Gatan 3View2 chamber, acceleration voltage 2.5 kV, variable pressure 5 Pa, aperture 20 µm, dwell time 6 µs, slice thickness 60 nm, magnification 15 000 x, image resolution 2048 x 2048 pixels, pixel size 7.3 nm
trim 90° diamond knife Diatome Ltd., Nidau, Switzerland DTB90
Ultramicrotome Leica Microsystems, Vienna, Austria Leica ultracutR
Software webpage tutorials
FijiJ https://fiji.sc/
Microscopy Image Browser http://mib.helsinki.fi/ http://mib.helsinki.fi/tutorials.html
Reconstruct https://synapseweb.clm.utexas.edu/software-0 https://synapseweb.clm.utexas.edu/software-0)
Animals
Mice Adult 3-month old and 20±1 month old female Thy1-GFP(M) mice (Thy1-GFP +/-) (Feng et al.,2000) which express GFP in a sparsely distributed population of glutamatergic neurons. Animals were bred as heterozygotes with the C57BL/6J background in the Animal House of the Nencki Institute of Experimental Biology.

References

  1. Bosch, M., Hayashi, Y. Structural plasticity dendritic spines. Current Opinion in Neurobiology. 22 (3), 383-388 (2012).
  2. Borczyk, M., Radwanska, K., Giese, K. P. The importance of ultrastructural analysis of memory. Brain Research Bulletin. 173, 28-36 (2021).
  3. Wanner, A. A., Kirschmann, M. A., Genoud, C. Challenges of microtome-based serial block-face scanning electron microscopy in neuroscience: challenges of SBEM in neuroscience. Journal of Microscopy. 259 (2), 137-142 (2015).
  4. Śliwińska, M. A., et al. Long-term Memory Upscales Volume of Postsynaptic Densities in the Process that Requires Autophosphorylation of αCaMKII. Cerebral Cortex. 30 (4), 2573-2585 (2020).
  5. Borczyk, M., Śliwińska, M. A., Caly, A., Bernas, T., Radwanska, K. Neuronal plasticity affects correlation between the size of dendritic spine and its postsynaptic density. Scientific Reports. 9 (1), 1693 (2019).
  6. Leighton, S. B. SEM images of block faces, cut by a miniature microtome within the SEM – a technical note. Scanning Electron Microscopy. , 73-76 (1981).
  7. Denk, W., Horstmann, H. Serial Block-Face Scanning Electron Microscopy to Reconstruct Three-Dimensional Tissue Nanostructure. PLoS Biology. 2 (11), 329 (2004).
  8. Smith, D., Starborg, T. Serial block face scanning electron microscopy in cell biology: Applications and technology. Tissue and Cell. 57, 111-122 (2019).
  9. Titze, B., Genoud, C. Volume scanning electron microscopy for imaging biological ultrastructure: Volume scanning electron microscopy. Biology of the Cell. 108 (11), 307-323 (2016).
  10. Deerinck, T. J., Bushong, E. A., Thor, A., Ellisman, M. H. . NCMIR methods for 3D EM: A new protocol for preparation of biological specimens for serial block face scanning electron microscopy. , 6-8 (2010).
  11. Willingham, M. C., Rutherford, A. V. The use of osmium-thiocarbohydrazide-osmium (OTO) and ferrocyanide-reduced osmium methods to enhance membrane contrast and preservation in cultured cells. Journal of Histochemistry & Cytochemistry. 32 (4), 455-460 (1984).
  12. Feng, G., et al. Imaging Neuronal Subsets in Transgenic Mice Expressing Multiple Spectral Variants of GFP. Neuron. 28 (1), 41-51 (2000).
  13. Gage, G. J., Kipke, D. R., Shain, W. Whole Animal Perfusion Fixation for Rodents. Journal of Visualized Experiments. (65), e3564 (2012).
  14. Paxinos, G., Franklin, K. B. J. . The mouse brain in stereotaxic coordinates. , (2004).
  15. Walton, J. Lead aspartate, an en bloc contrast stain particularly useful for ultrastructural enzymology. Journal of Histochemistry & Cytochemistry. 27 (10), 1337-1342 (1979).
  16. Mercer, E. H. a scheme for section staining in electron microscopy. Journal of the Royal Microscopical Society. 81 (3-4), 179-186 (1963).
  17. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 9 (7), 676-682 (2012).
  18. Belevich, I., Joensuu, M., Kumar, D., Vihinen, H., Jokitalo, E. Microscopy Image Browser: A Platform for Segmentation and Analysis of Multidimensional Datasets. PLOS Biology. 14 (1), 1002340 (2016).
  19. Fiala, J. C. Reconstruct: a free editor for serial section microscopy. Journal of Microscopy. 218 (1), 52-61 (2005).
  20. Roels, J., et al. An interactive ImageJ plugin for semi-automated image denoising in electron microscopy. Nature Communications. 11 (1), 771 (2020).
  21. Radwanska, K., et al. Mechanism for long-term memory formation when synaptic strengthening is impaired. Proceedings of the National Academy of Sciences. 108 (45), 18471-18475 (2011).
  22. Kittelmann, M., Hawes, C., Hughes, L. Serial block face scanning electron microscopy and the reconstruction of plant cell membrane systems: SBFSEM Methods for Plant Cells. Journal of Microscopy. 263 (2), 200-211 (2016).
  23. Fendrych, M., et al. Programmed Cell Death Controlled by ANAC033/SOMBRERO Determines Root Cap Organ Size in Arabidopsis. Current Biology. 24 (9), 931-940 (2014).
  24. Russell, M. R. G., et al. 3D correlative light and electron microscopy of cultured cells using serial blockface scanning electron microscopy. Journal of Cell Science. 130 (1), 278-291 (2017).
  25. Płachno, B. J., Świątek, P., Jobson, R. W., Małota, K., Brutkowski, W. Serial block face SEM visualization of unusual plant nuclear tubular extensions in a carnivorous plant (Utricularia, Lentibulariaceae). Annals of Botany. 120 (5), 673-680 (2017).
  26. Genoud, C., Titze, B., Graff-Meyer, A., Friedrich, R. W. Fast Homogeneous En Bloc Staining of Large Tissue Samples for Volume Electron Microscopy. Frontiers in Neuroanatomy. 12, (2018).
  27. Puhka, M., Joensuu, M., Vihinen, H., Belevich, I., Jokitalo, E. Progressive sheet-to-tubule transformation is a general mechanism for endoplasmic reticulum partitioning in dividing mammalian cells. Molecular Biology of the Cell. 23 (13), 2424-2432 (2012).
  28. Gluenz, E., Wheeler, R. J., Hughes, L., Vaughan, S. Scanning and three-dimensional electron microscopy methods for the study of Trypanosoma brucei and Leishmania mexicana flagella. Methods in Cell Biology. 127, 509-542 (2015).
  29. Starborg, T., et al. Using transmission electron microscopy and 3View to determine collagen fibril size and three-dimensional organization. Nature Protocols. 8 (7), 1433-1448 (2013).
  30. Hughes, L., Borrett, S., Towers, K., Starborg, T., Vaughan, S. Patterns of organelle ontogeny through a cell cycle revealed by whole-cell reconstructions using 3D electron microscopy. Journal of Cell Science. 130 (3), 637-647 (2017).
  31. Bojko, A., et al. Improved Autophagic Flux in Escapers from Doxorubicin-Induced Senescence/Polyploidy of Breast Cancer Cells. International Journal of Molecular Sciences. 21 (17), 6084 (2020).
  32. Knott, G. W., Holtmaat, A., Trachtenberg, J. T., Svoboda, K., Welker, E. A protocol for preparing GFP-labeled neurons previously imaged in vivo and in slice preparations for light and electron microscopic analysis. Nature Protocols. 4 (8), 1145-1156 (2009).
  33. Glauert, A. M., Lewis, P. R. . Biological specimen preparation for transmission electron microscopy. , (2014).
  34. Genoud, C. Altered Synapse Formation in the Adult Somatosensory Cortex of Brain-Derived Neurotrophic Factor Heterozygote Mice. Journal of Neuroscience. 24 (10), 2394-2400 (2004).

Play Video

Citer Cet Article
Śliwińska, M. A., Cały, A., Szymański, J., Radwańska, K. Serial Block-Face Scanning Electron Microscopy (SBEM) for the Study of Dendritic Spines. J. Vis. Exp. (176), e62712, doi:10.3791/62712 (2021).

View Video