لقد طورنا نهجا جديدا لفقدان الوظيفة يتضمن إدخال تسلسل الحمض النووي الريبي الدقيق الاصطناعي ودمجه الجينومي في أجنة الفرخ باستخدام التثقيب الكهربائي في البويضات ونظام ترانسبوزون Tol2. توفر هذه التقنية منهجية قوية ومستقرة لضربة قاضية للجينات لدراسات وظيفة الجينات أثناء التطوير.
لطالما كانت شبكية العين كتكوت نظاما نموذجيا مهما في علم الأعصاب التنموي ، مع مزايا تشمل حجمها الكبير وتطورها السريع وإمكانية الوصول إليها للتصور والتلاعب التجريبي. ومع ذلك، كان القيد التقني الرئيسي هو عدم وجود نهج قوية لفقدان الوظيفة لتحليل وظائف الجينات. يصف هذا البروتوكول منهجية إسكات الجينات في شبكية العين النامية التي تنطوي على التعبير الوراثي للحمض النووي الريبي الدقيق الاصطناعي (miRNAs) باستخدام نظام Tol2 transposon. في هذا النهج ، يتم إدخال بلازميد Tol2 transposon الذي يحتوي على شريط تعبير لعلامة EmGFP (بروتين الفلورسنت الأخضر الزمردي) وتسلسلات اصطناعية قبل miRNA ضد جين مستهدف في شبكية العين الجنينية مع تعبير Tol2 transposase بناء بواسطة في التثقيب الكهربائي للبيض . في خلايا الشبكية المنقولة ، يحفز transposase استئصال كاسيت التعبير من ناقل transposon واندماجه في الكروموسومات المضيفة ، مما يؤدي إلى التعبير المستقر عن miRNAs وبروتين EmGFP. في دراستنا السابقة ، أثبتنا أن التعبير عن Nel ، وهو بروتين سكري يمارس وظائف متعددة في التطور العصبي ، يمكن قمعه بشكل كبير في شبكية العين النامية باستخدام هذه التقنية. تشير نتائجنا إلى أن هذه المنهجية تحفز قمعا مستقرا وقويا للتعبير الجيني وبالتالي توفر نهجا فعالا لفقدان الوظيفة لدراسات تطور الشبكية.
شبكية الفقاريات هي نظام نموذجي مهم لدراسة التطور العصبي. على الرغم من موقعها المحيطي ، فإن شبكية العين هي امتداد تشريحي وتنموي للجهاز العصبي المركزي ، ويمثل العصب البصري ، الذي يتكون من محاور عصبية لخلايا العقدة الشبكية ، مسلك داخل الجهاز العصبي المركزي. تتمتع شبكية العين بمزايا كبيرة كنظام نموذجي لدراسة الآلية الجزيئية للتطور العصبي: إنها كبيرة وتتطور بسرعة. لديها أوجه تشابه هيكلية ووظيفية مع شبكية العين البشرية. يمكن الوصول إليه بشكل كبير للتصور والتلاعب التجريبي. تمت دراسة الآليات الجزيئية لتكاثر الخلايا وتمايزها ، والتشكل ، وتوجيه المحور العصبي أثناء التطور العصبي على نطاق واسع باستخدام شبكية الدجاج.
تم استخدام التثقيب الكهربائي في البويضات بنجاح على مدى العقدين الماضيين لإدخال جينات خارج الرحم في الخلايا في جنين الفرخ النامي. تسمح هذه التقنية بوضع العلامات على الخلايا النامية ، وتتبع مصير الخلية ، وتتبع هجرة الخلايا والمسالك المحورية ، بالإضافة إلى التعبير الجيني خارج الرحم للتحليل في الجسم الحي لوظيفة الجينات. تم تأسيس شروط التثقيب الكهربائي في البويضة للتعبير الجيني خارج الرحم الفعال في أجنة الكتاكيتبشكل جيد 1،2،3.
على الرغم من هذه المزايا ، كان عدم وجود تقنية مستقرة لفقدان الوظيفة لدراسات وظيفة الجينات بمثابة قيد تقني رئيسي لجنين الفرخ. في حين أن أجنة الكتاكيت المكهربة بالحمض النووي الريبي الصغير المتداخل (siRNAs)4 أو ناقلات التعبير للحمض النووي الريبي قصير الدبوس (shRNAs)5 تظهر ضربة قاضية للجين المستهدف ، فإن قمع الجينات في هذه الأساليب عابر لأن التأثيرات تختفي بمجرد أن تفقد الخلايا الحمض النووي الريبي أو الحمض النووي المدخل. يمكن تحقيق قمع جيني أكثر استقرارا عن طريق توصيل siRNAs إلى أجنة الكتاكيت بواسطة RCAS (Replication Competent Avian sarcoma-leukosis virus (ASLV) التكرار الطرفي الطويل (LTR) مع مستقبل Splice) نظام الفيروس القهقري6. يندمج الناقل الفيروسي في جينوم المضيف ، ويتم التعبير عن الجينات خارج الرحم بثبات. ومع ذلك ، لا يمكن للفيروس القهقري الاندماج إلا في جينوم الخلايا المنقسمة خلال المرحلة الانقسامية (M) من دورة الخلية ، مما قد يفرض قيودا على مراحل النمو و / أو أنواع الخلايا التي يمكن تطبيق نهج فقدان الوظيفة عليها. بالإضافة إلى ذلك ، يبدو التعبير عن جينات التحوير بواسطة RCAS أبطأ وأقل قوة من ذلك الناجم عن التثقيب الكهربائي للبيض 7.
الترانسبوزونات هي عناصر وراثية تنتقل من موقع على الجينوم إلى آخر. عنصر Tol2 هو عضو في عائلة العناصر القابلة للنقل hAT ويحتوي على جين داخلي يشفر ترانسبوزاز يحفز تفاعل الترانسبوزون لعنصر Tol28. عندما يتم إدخال ناقل البلازميد الذي يحمل شريط تعبير جيني محاط بتسلسل الطرفين الأيسر والأيمن لعناصر Tol2 (200 bp و 150 bp ، على التوالي) في خلايا الفقاريات مع بنية تعبير Tol2 transposase ، يتم استئصال كاسيت التعبير من البلازميد ودمجه في جينوم المضيف ، والذي يدعم تعبيرا مستقرا للجين خارج الرحم (الشكل 1). لقد ثبت أن عنصر Tol2 القابل للنقل يمكن أن يحفز نقل الجينات بكفاءة عالية في أنواع الفقاريات المختلفة ، بما في ذلك الزرد9،10 ، والضفادع11 ، والكتاكيت 12 ، والفئران 13 ، وبالتالي فهي طريقة مفيدة للتحوير الجيني والطفرات الإدراجية. تم استخدام نظام ترانسبوزون Tol2 بنجاح للضربة القاضية الشرطية للجين المستهدف عن طريق التكامل الجيني ل siRNA الذي تتم معالجته من الحمض النووي الريبي14 الطويل المزدوج الشريط.
يصف هذا البروتوكول نهج فقدان الوظيفة في جنين الفرخ الذي يتضمن إدخال الحمض النووي الريبي الدقيق الاصطناعي (miRNAs) بواسطة نظام Tol2 transposon15,16. في هذا النهج ، يتم استنساخ شريط تعبير لعلامة EmGFP (بروتين الفلورسنت الأخضر الزمردي) و miRNAs الاصطناعية ضد الجين المستهدف في ناقل ترانسبوزون Tol2. ثم يتم إدخال بنية ترانسبوزون Tol2 في شبكية العين الجنينية مع بناء تعبير Tol2 transposase بواسطة التثقيب الكهربائي للبيض. في خلايا الشبكية المنقولة ، يحفز transposase استئصال كاسيت التعبير من ناقل transposon واندماجه في الكروموسومات المضيفة ، مما يؤدي إلى التعبير المستقر عن miRNAs وبروتين EmGFP. في دراساتنا السابقة ، نجحنا في التخلص من تعبير نيل ، وهو بروتين سكري خارج الخلية يتم التعبير عنه في الغالب في الجهاز العصبي ، في شبكية العين النامية (انظر النتائج التمثيلية). تشير نتائجنا إلى أنه يمكن تحقيق قمع الجينات المستقر والفعال في البويضات بهذه التقنية.
يوفر هذا البروتوكول دليلا مفصلا لإسكات الجينات في شبكية العين النامية عن طريق التعبير المعدل وراثيا عن miRNAs الاصطناعية باستخدام التثقيب الكهربائي للبيض ونظام Tol2 transposon.
العوامل التالية لها أهمية حاسمة في أداء هذه التقنية بنجاح. أولا ، من الأهمية بمكان استخدام تسلسلات mi…
The authors have nothing to disclose.
تم توفير نواقل pT2K-CAGGS و pCAGGS-T2TP من قبل يوشيكو تاكاهاشي (جامعة كيوتو ، كيوتو ، اليابان) وكويتشي كاواكامي (المعهد الوطني لعلم الوراثة ، ميشيما ، اليابان) ، على التوالي. نشكر مايكل بربر أوغلو على قراءته الحاسمة للمخطوطة. تم دعم هذا العمل بمنح من الجمعية الملكية ومجلس أبحاث التكنولوجيا الحيوية والعلوم البيولوجية (BBSRC) (المملكة المتحدة) إلى M.N.
18 G needle, 2" | VWR | 89219-320 | |
AP-TAG kit A and AP-TAG kit B | GenHunter Corp | Q201 and Q202 | Plasmid vectors for making AP fusion proteins (https://www.genhunter.com/products/ap-tag-kit-a.html, https://www.genhunter.com/products/ap-tag-kit-b.html) |
Block-iT RNAi Designer | Invitrogen | An online tool to choose target sequences and design pre-miRNA sequences (https://rnaidesigner.thermofisher.com/rnaiexpress/) | |
BSA 10 mg | Sigma-Aldrich | A2153 | |
C115CB cables | Sonidel | C115CB | https://www.sonidel.com/product_info.php?products_id¼254 |
C117 cables | Sonidel | C117 | https://www.sonidel.com/product_info.php?products_id¼252 |
Capillary tubes with omega dot fiber (Micropipette needles) | FHC | 30-30-1 | 1 mm O.D. 0.75 mm I.D |
CUY21 square wave electroporator | Nepa Gene | CUY21 | |
Diethanolamine (pH 9.8) | Sigma-Aldrich | D8885 | |
Dissecting microscope | |||
Egg incubator | Kurl | B-Lab-600-110 | https://www.flemingoutdoors.com/kuhl%2D%2D-600-egglaboratory-incubator%2D%2D-b-lab-600-110.html |
Electrode holder | Sonidel | CUY580 | https://www.sonidel.com/product_info.php?products_id¼85 |
Electrodes | Nepa Gene | CUY611P3-1 | https://www.sonidel.com/product_info.php?products_id¼94 |
Electromax DH10B | Invitrogen | 18290-015 | Electrocompetent E. coli cells |
Fast green FCF | Sigma-Aldrich | F7258 | |
Fertilized chicken eggs (Gallus gallus) | Obtained from commercial vendors (e.g. Charles River) or local farmers | ||
Gooseneck fiber light source | |||
FuGene 6 transfection reagent | Promega | E2691 | |
Hamilton syringe (50 μL) | Sigma-Aldrich | 20715 | Hamilton Cat No 80901 |
Hanks' balanced salt solution | Sigma-Aldrich | H6648 | |
Heavy mineral oil | Sigma-Aldrich | 330760 | |
HEPES | GIBCO | 15630080 | |
L-Homoarginine | Sigma-Aldrich | H10007 | |
MgCl2 | Sigma-Aldrich | 13112 | |
Micromanipulator | Narishige (Japan) | MM3 | http://products.narishige-group.com/group1/MM-3/electro/english.html |
Micropipette puller | Shutter Instrument | P97 | |
p-Nitrophenylphosphate | Sigma-Aldrich | 20-106 | |
PBS | Sigma-Aldrich | D8662 | |
pCAGGS-T2TP vector | Tol2 transposase expression plasmid. A generous kind gift of Koichi Kawakami (National Institute of Genetics, Japan). Also available from Addgene. | ||
Pfu | ThermoFisher | F566S | |
Picospritzer (Optional) | Parker | Pressure microinjection system | |
Plasmid maxi kit | Qiagen | 12163 | Plasmid maxiprep kit |
pT2K-CAGGS vector | Tol2 transposon vector. Kindly provided by Yoshiko Takahashi (Kyoto University, Japan) | ||
PVC tubing | VWR (UK) | 228-3830 | |
Spectinomycin | Sigma-Aldrich | S9007-5 | |
T4 DNA ligase | Promega | M1801 | |
The BLOCK-iT Pol II miR RNA expression kit with EmGFP | Invitrogen | K493600 | Contains the miRNA expression vector (pcDNA6.2-GW/EmGFP-miRNA), a control vector (pcDNA6.2-GW/EmGFP-miRNA-negative control plasmid), accessory reagents, and instructions (https://www.thermofisher.com/order/catalog/product/K493600?SID.srch-hj-K4936-00) |
Thermal cycler |