Hier wird ein Protokoll zur metabolischen Markierung von Hefe mit 14C-Essigsäure vorgestellt, das mit dünnschichtiger Chromatographie zur Abtrennung neutraler Lipide gekoppelt ist.
Neutrale Lipide (NLs) sind eine Klasse von hydrophoben, ladungslosen Biomolekülen, die eine Schlüsselrolle bei der Energie- und Lipidhomöostase spielen. NLs werden de novo aus Acetyl-CoA synthetisiert und kommen in Eukaryoten vor allem in Form von Triglyceriden (TGs) und Sterolestern (SEs) vor. Die Enzyme, die für die Synthese von NLs verantwortlich sind, sind von Saccharomyces cerevisiae (Hefe) für den Menschen hoch konserviert, was Hefe zu einem nützlichen Modellorganismus macht, um die Funktion und Regulation von NL-Stoffwechselenzymen zu analysieren. Während viel darüber bekannt ist, wie Acetyl-CoA in eine Vielzahl von NL-Spezies umgewandelt wird, werden Mechanismen zur Regulierung von NL-Stoffwechselenzymen und wie Fehlregulation zu zellulären Pathologien beitragen kann, immer noch entdeckt. Zahlreiche Methoden zur Isolierung und Charakterisierung von NL-Arten wurden in jahrzehntelanger Forschung entwickelt und eingesetzt; Ein quantitatives und einfaches Protokoll für die umfassende Charakterisierung der wichtigsten NL-Arten wurde jedoch nicht diskutiert. Hier wird eine einfache und anpassungsfähige Methode zur Quantifizierung der De-novo-Synthese wichtiger NL-Arten in Hefe vorgestellt. Wir wenden 14C-Essigsäure-Stoffwechselmarkierungen in Verbindung mit Dünnschichtchromatographie an, um eine Vielzahl physiologisch wichtiger NLs zu trennen und zu quantifizieren. Darüber hinaus kann diese Methode leicht angewendet werden, um in vivo Reaktionsraten von NL-Enzymen oder den Abbau von NL-Spezies im Laufe der Zeit zu untersuchen.
Acetyl-CoA ist der grundlegende Baustein verschiedener Biomoleküle, einschließlich neutraler Lipide (NLs), die als vielseitige biomolekulare Währung für den Aufbau von Membranen, die Erzeugung von ATP und die Regulierung der Zellsignalisierung dienen1,2. Die Verfügbarkeit von NLs, die in einen dieser jeweiligen Pfade geschoben werden können, wird teilweise durch ihre Speicherung reguliert. Lipidtröpfchen (LDs), zytoplasmatische Organellen, die aus hydrophoben Kernen von Triglyceriden (TGs) und Sterolestern (SEs) bestehen, sind die Hauptspeicherkompartimente der meisten zellulären NLs. Als solche sequestrieren und regulieren LDs NLs, die abgebaut und anschließend für biochemische und metabolische Prozesse genutzt werden können3,4. Es ist bekannt, dass die Fehlregulation von NL- und LD-assoziierten Proteinen mit dem Auftreten von Pathologien wie Lipodystrophie und metabolischen Syndromen korreliert5,6. Aus diesem So konzentriert sich die aktuelle LD-Forschung intensiv darauf, wie die NL-Synthese räumlich, zeitlich und über verschiedene Gewebe mehrzelliger Organismen hinweg reguliert wird. Aufgrund der allgegenwärtigen zellulären Rolle für NLs sind viele Enzyme, die für die Synthese und Regulation von NLs verantwortlich sind, in allen Eukaryotenerhalten 7. Tatsächlich speichern sogar einige Prokaryoten NLs in LDs8. Daher waren genetisch traktierbare Modellorganismen wie Saccharomyces cerevisiae (Knospenhefe) für die Untersuchung der NL-Synthese und -Regulation nützlich.
Die Trennung und Quantifizierung von NLs aus Zellextrakten kann auf vielfältige Weise erreicht werden, einschließlich Gaschromatographie-Massenspektrometrie (GC-MS), Hochleistungsflüssigkeitschromatographie (HPLC) und Ultra-Performance-Flüssigkeitschromatographie-Massenspektrometrie (UPLC-MS)9,10,11. Die vielleicht einfachste Methode zur Trennung von NLs ist die Dünnschichtchromatographie (TLC), die eine anschließende densitometrische Quantifizierung aus einer Standardkurve12,13ermöglicht. Obwohl TLC nur eine kurskörnige Trennung von NLs bietet, bleibt es eine leistungsstarke Technik, da es kostengünstig ist und die schnelle Trennung von NLs von mehreren Proben gleichzeitig ermöglicht. Zwei der größten Herausforderungen bei der Untersuchung von NLs mittels TLC sind: 1) das breite Spektrum der zellulären Häufigkeiten von NL-Spezies und ihren Zwischenprodukten und 2) das Spektrum der Hydrophilie / Hydrophobie von Lipidzwischenprodukten innerhalb der NL-Synthesewege. Folglich ist die Quantifizierung von NL-Arten über TLC typischerweise auf die am häufigsten vorkommenden Arten beschränkt; Die Einführung einer 14-C-Essigsäure-Radiomarkierung kann jedoch den Nachweis von Zwischenprodukten mit geringer Abundanz innerhalb von NL-Signalwegen erheblich verbessern. Essigsäure wird durch die Acetyl-CoA-Synthetase ACS214schnell in Acetyl-CoA umgewandelt, wodurch 14C-Essigsäure ein geeignetes Radiomarkierungssubstrat in Hefe15ist. Zusätzlich kann die Trennung sowohl von hydrophoben NLs als auch von hydrophilen Zwischenprodukten von NLs durch TLC durch den Einsatz mehrerer Lösungsmittelsysteme erreicht werden16. Hier wird ein Verfahren zur Trennung von NLs mittels 14C-Essigsäure-Stoffwechselmarkierung in Hefe vorgestellt. Lipide, die während der Pulszeit markiert werden, werden anschließend durch ein gut etabliertes Totallipidisolationsprotokoll17isoliert, gefolgt von der Trennung der NL-Spezies durch TLC. Die Entwicklung von TLC-Platten sowohl durch Autoradiographie zur Visualisierung markierter Lipide als auch durch ein chemisches Spray zur Visualisierung von Gesamtlipiden ermöglicht mehrere Quantifizierungsmethoden. Einzelne Lipidbänder können auch leicht mit einer Rasierklinge aus der TLC-Platte extrahiert werden, und die Szintillationszählung kann verwendet werden, um die Menge an radioaktiv markiertem Material innerhalb des Bandes zu quantifizieren.
Hier wird ein vielseitiges Radiolabeling-Protokoll zur quantitativen Überwachung der Synthese von NL-Arten in Hefe vorgestellt. Dieses Protokoll ist sehr modular aufgebaut, so dass das Verfahren innerhalb von 3-6 Tagen abgeschlossen werden kann. Darüber hinaus gibt es eine Fülle von Literatur über die Verwendung von TLC zur Trennung von Lipidspezies und Metaboliten, die es dem Benutzer ermöglichen sollte, mehrere Lipidspezies von Interesse mit einem einfachen Wechsel der TLC-Lösungsmittelsysteme nachzuweisen<sup cl…
The authors have nothing to disclose.
Die Autoren danken den Mitgliedern des Henne-Labors für die Hilfe und konzeptionelle Beratung bei der Fertigstellung dieser Studie. W.M.H. wird durch Mittel der Welch Foundation (I-1873), des NIH NIGMS (GM119768), des Ara Paresghian Medical Research Fund und des UT Southwestern Endowed Scholars Program unterstützt. S.R wurde durch einen T32-Programmzuschuss (5T32GM008297) unterstützt.
[1-C14] Acetic acid sodium salt specific activity: 45-60mCi | PerkinElmer | NEC084H001MC | |
18:1 1,2 dioleoyl-sn-glycerol | Avanti | 800811O | |
200 proof absolute ethanol | Sigma | 459836 | |
Acid washed glass beads 425-600um | Sigma | G8772 | |
Amber bulbs for Pastuer pipettes | Fisher | 03-448-24 | |
Ammonium Sulfate >99% | Sigma | A4418 | |
Beckman LS6500 scintillation counter | PerkinElmer | A481000 | |
Chloroform (HPLC grade) | Fisher | C607SK | |
Cholesterol >99% | Sigma | C8667 | |
Cholesteryl-linoleate >98% | Sigma | C0289 | |
Concentrated sulfuric acid | Sigma | 339741 | |
Corning 50mL conical tubes, polypropylene with centristar cap | Sigma | CLS430829 | |
Dextrose, anhydrous grade | Sigma | D9434 | |
Diethyl ether anhydrous grade | Sigma | 296082 | |
Drying oven | Fisher | 11-475-155 | |
EcoLume scintillation liquid | VWR | IC88247001 | |
Eppendorf 5424R centrifuge | Fisher | 05-401-205 | |
GE Storage phosphor screen | Sigma | GE28-9564-75 | |
GE Typhoon FLA9500 imager | |||
Glacial acetic acid, ACS grade | Sigma | 695092 | |
Glass 6mL scintillation vials | Sigma | M1901 | |
Glass centrifuge tube caps | Fisher | 14-595-36A | |
Glass centrifuge tubes | Fisher | 14-595-35A | |
Glass Pasteur pipette | Fisher | 13-678-20C | |
Hexane, anhydrous grade | Sigma | 296090 | |
L-Adenine >99% | Sigma | A8626 | |
L-Alanine >98% | Sigma | A7627 | |
L-Arginine >99% | Sigma | A1270000 | |
L-Asparagine >98% | Sigma | A0884 | |
L-Aspartate >98% | Sigma | A9256 | |
L-Cysteine >97% | Sigma | W326305 | |
L-Glutamic acid monosodium salt monohydrate >98% | Sigma | 49621 | |
L-Glutamine >99% | Sigma | G3126 | |
L-Glycine >99% | Sigma | G8898 | |
L-Histidine >99% | Sigma | H8000 | |
L-Isoleucine >98% | Sigma | I2752 | |
L-Leucine >98% | Sigma | L8000 | |
L-Lysine >98% | Sigma | L5501 | |
L-Methionine, HPLC grade | Sigma | M9625 | |
L-Phenylalanine, reagent grade | Sigma | P2126 | |
L-Proline >99% | Sigma | P0380 | |
L-Serine >99% | Sigma | S4500 | |
L-Theronine, reagent grade | Sigma | T8625 | |
L-Tryptophan >98% | Sigma | T0254 | |
L-Tyrosine >98% | Sigma | T3754 | |
L-Uracil >99% | Sigma | U0750 | |
L-Valine >98% | Sigma | V0500 | |
Methanol, ACS grade | Fisher | A412 | |
Oleic acid >99% | Sigma | O1008 | |
p-anisaldehyde | Sigma | A88107 | |
Petroleum ether, ACS grade | Sigma | 184519 | |
Phosphatidylcholine, dipalmitoyl >99% | Sigma | P1652 | |
Pipettes | Eppendorf | 2231000713 | |
Potassium chloride, ACS grade | Sigma | P3911 | |
Sodium Hydroxide pellets, certified ACS | Fisher | S318-100 | |
Squalene >98% | Sigma | S3626 | |
Succinic Acid crystalline/certified | Fisher | 110-15-6 | |
TLC saturation pad | Sigma | Z265225 | |
TLC silica gel 60G glass channeled plate | Fisher | NC9825743 | No fluorescent indicators |
Transparency plastic film | Apollo | 829903 | |
Tricine | Sigma | T0377 | |
Triolein >99% | Sigma | T7140 | |
Vortex mixer | Fisher | 02-215-414 | |
Whatman exposure cassette | Sigma | WHA29175523 | |
Yeast nitrogen base without ammonium sulfate and amino acids | Sigma | Y1251 |