Описанные в настоящем описании протоколы обеспечивают руководство по визуализации и количественной оценке активности нейтрофильных протеаз в мокроте человека. Применение такого анализа простирается от оценки противовоспалительных методов лечения до валидации биомаркеров, скрининга лекарств и крупных когортных клинических исследований.
Протеазы являются регуляторами бесчисленных физиологических процессов, и точное исследование их деятельности остается интригующей биомедицинской проблемой. Среди ~ 600 протеаз, кодируемых геномом человека, нейтрофильные сериновые протеазы (NSP) тщательно исследуются на их участие в возникновении и прогрессировании воспалительных состояний, включая респираторные заболевания. Уникально, что секретируемые НСП не только диффундируют во внеклеточных жидкостях, но и локализуются в плазматических мембранах. Во время формирования внеклеточной ловушки нейтрофилов (NETs) НСП становятся неотъемлемой частью секретируемого хроматина. Такое сложное поведение делает понимание патофизиологии НСП сложной задачей. Здесь показаны подробные протоколы для визуализации, количественной оценки и различения активности свободной и связанной с мембраной нейтрофильной эластазы (NE) и катепсина G (CG) в образцах мокроты. NE и CG являются НСП, деятельность которых имеет плейотропную роль в патогенезе муковисцидоза (МВ) и хронической обструктивной болезни легких (ХОБЛ): они способствуют ремоделированию тканей, регулируют иммунные реакции и коррелируют с тяжестью заболевания легких. Протоколы показывают, как отделить жидкую и клеточную фракцию, а также выделение нейтрофилов из мокроты человека для количественной оценки ферментативной активности с помощью маломолекулярных репортеров на основе резонансного переноса энергии Фёрстера (FRET). Для сбора конкретной информации об относительной роли активности NE и CG показания FRET могут быть измерены с помощью различных технологий: i) измерения считывателя пластин in vitro позволяют высокопроизводительно и объемно обнаруживать активность протеазы; ii) конфокальная микроскопия пространственно-временно разрешает мембранно-связанную активность на поверхности клетки; iii) маломолекулярная проточная цитометрия FRET позволяет быстро оценивать противовоспалительные методы лечения с помощью количественной оценки активности одноклеточной протеазы и фенотипирования. Внедрение таких методов открывает двери для изучения патобиологии НСП и их потенциала в качестве биомаркеров тяжести заболевания муковисцидозом и ХОБЛ. Учитывая их потенциал стандартизации, надежное считывание и простоту передачи, описанные методы немедленно могут быть распределены для внедрения в исследовательских и диагностических лабораториях.
Нейтрофильная эластаза (NE), катепсин G (CG), протеиназа 3 (PR3) и нейтрофильная сериновая протеаза 4 (NSP4) являются четырьмя нейтрофильными сериновыми протеазами (NSP)1. Они хранятся вместе с миелопероксидазой в первичных или азурофильных гранулах нейтрофилов. Из-за их повышенного протеолитического содержания секреция первичных гранул жестко регулируется, и нейтрофилы должны последовательно оспариваться с помощью прайминговых и активирующих стимулов2.
Внутри фаголизосомы НСП функционируют как внутриклеточные бактерицидные агенты3. При секреции НСП становятся сильными медиаторами воспаления: они расщепляют цитокины и поверхностные рецепторы, активируя параллельные провоспалительныепути 3. Важно отметить, что воспалительные состояния имеют неконтролируемую секрецию НСП. Например, в воспаленных дыхательных путях чрезмерная активность NE вызывает гиперсекрецию слизи, метаплазию клеток-шарманов, инактивацию CFTR и ремоделирование внеклеточного матрикса4,5. Катепсин G также участвует в воспалении: он специфически расщепляет и активирует два компонента семейства IL-1, IL-36α и IL-36β6. В сочетании с NE CG расщепляет рецепторы, активированные протеазой, на эпителии дыхательных путей, а также активирует TNF-α и IL-1β.
Эндогенные антипротеазы, такие как альфа-1-антитрипсин, альфа-1-антихимотрипсин и секреторный ингибитор лейкоцитарной протеазы, регулируют активность нейтрофильной эластазы и катепсина G5. Однако в ходе прогрессирования заболевания легких непрерывная секреция протеаз превышает стехиометрически антипротеазный щит, что приводит к неразрешающей нейтрофилии в дыхательных путях, обострению воспаления и повреждению тканей5,7. Хотя было показано, что концентрация и активность NE в растворимых фракциях дыхательных путей пациента являются многообещающим биомаркером тяжести заболевания8,NE и CG также связываются с нейтрофильной плазматической мембраной и внеклеточной ДНК посредством электростатических взаимодействий9,10, где они становятся менее доступными для антипротеаз. Важно отметить, что доклинические исследования определили сценарий, в котором клеточная поверхностно-ассоциированная активность протеазы проявляется раньше и/или независимо от ее растворимогоаналога4,11. Фактически, чтобы стать обнаруживаемой, активность свободной протеазы сначала должна подавить антипротеазный щит. Вместо этого на поверхности клетки мембранно-связанная активность протеазы остается, по меньшей мере, частично неповрежденной из-за недоступности крупных ингибиторов к клеточной плазматической мембране12. Такое сложное поведение протеазы имеет важные последствия для начала и распространения воспаления, опосредованного нейтрофилами, и поэтому должно быть исследовано с помощью точных и информативных инструментов.
На протяжении многих лет зонды на основе резонансного переноса энергии Förster (FRET) находили многочисленные биомедицинские применения в качестве инструментов, которые эффективно и быстро оценивают специфическую активность протеазы в образцах человека13. Для функционирования протеазы репортеры состоят из мотива распознавания (то есть пептида), который распознается ферментом-мишенью и полагается на FRET, физический процесс, где при возбуждении донорский флуорофор передает энергию молекуле-акцептору. Обработка, управляемая ферментом на репортере, а именно расщепление распознаваемой части, приводит к тому, что акцептор диффундирует от донора: поэтому активность фермента измеряется как зависящие от времени изменения донора по сравнению с акцепторной флуоресценцией. Такое считывание является самонормализующимся и ратиометрическим, поэтому на него лишь незначительно влияют условия окружающей среды, такие как рН и концентрация в локальном зонде. NEmo-114 и sSAM15 являются зондами FRET, которые сообщают конкретно об активности NE и CG соответственно. Однако такие репортеры не локализуются конкретно в каком-либо клеточном компартменте, поэтому они используются для мониторинга активности протеазы, присутствующей в жидкостях человека. Чтобы контролировать активность протеазы пространственно локализованным образом, мы и другие разработали зонды FRET, которые связываются с субклеточными компонентами через молекулярные метки14,15,16,17,18,19. Такая синтетическая стратегия позволила разработать NEmo-2 и mSAM, два зонда FRET, оснащенные липидными якорями, которые локализуются на плазматической мембране. Эти репортеры способствовали более глубокому пониманию протеаз NE и CG при муковисцидозе и хронических обструктивных заболеваниях легких14,15.
Здесь представлены подробные протоколы для визуализации и количественной оценки растворимой и связанной с мембраной активности NE и CG в мокроте человека с помощью зондов NEmo и SAM серий FRET. Для решения различных аспектов патофизиологии NSP и предоставления массива методов, которые могут быть использованы в соответствии с потребностями конкретного пользователя, показан анализ с помощью флуоресцентной спектроскопии, флуоресцентной микроскопии и проточной цитометрии.
Представленные протоколы объясняют различные подходы к количественной оценке активности нейтрофильной эластазы и катепсина G в образцах мокроты человека. Критическими точками для успешного измерения активности ферментов являются: i) точное время и стандартизация оперативной процедуры и ii) использование надежных отрицательных и положительных средств контроля. При условии, что эти условия соблюдены, описанные методы не ограничиваются мокротой, но также могут быть легко адаптированы к анализу активности протеазы в крови, жидкостях бронхоальвеолярного лаважа и срезах тканей или гомогенатах.
Каждая из трех техник имеет свои сильные стороны и ограничения, которые часто дополняют друг друга. Например, проточная цитометрия позволяет проводить быстрый анализ редких клеточных популяций, а также фенотипирование клеток, но не имеет пространственной информации о разрешении, что может быть достигнуто с помощью микроскопии. Вместо этого измерения считывателя пластин позволяют проводить параллельную оценку нескольких образцов или условий с высокой пропускной способностью. Поскольку свежие клетки мокроты не могут быть заморожены и сохранены, три метода требуют, чтобы образцы были быстро обработаны после отхаркивания. Это ограничивает гибкость или пропускную способность измерений активности, связанной с мембраной. Разработка протокола проточной цитометрии, позволяющее фиксировать клетки после добавления зонда и ферментативного расщепления, открыла бы параллельное измерение большего числа трубок. Кроме того, особое внимание следует уделять обращению и хранению зондов FRET. Фактически, некоторые аминокислоты, присутствующие в пептидном субстрате, такие как метионин, подвергаются окислению, что приводит к снижению репортерной чувствительности. Для увеличения срока годности репортера (по оценкам, около трех месяцев при 20 °C) их можно хранить в небольших объемных аликвотах (1-2 мкл) под инертным газом, таким как азот или аргон.
При муковисцидозе и других хронических воспалительных заболеваниях легких важно обнаружить воспаление как можно раньше, а надежные биомаркеры имеют потенциал для достижения такой цели. Возможность обнаружения поверхностно-связанной активности НСП, которая, как было показано, вредна для окружающих тканей, также в условиях, когда отсутствует или мало свободной активности NE, добавляет еще один уровень ценной информации, который вряд ли может быть достигнут с помощью других существующих методов4,11.
Репортеры могут быть использованы для изучения связи связанной с мембраной активности НСП с тяжестью и прогрессированием заболевания легких, особенно в его раннем начале. Методы могут быть использованы для мониторинга эффективности лечения (например, противовоспалительных методов лечения или высокоэффективных модуляторов CFTR и потенциаторов28)и исследования результирующего ослабления воспаления, вызванного нейтрофилами. Кроме того, протоколы основаны на неинвазивных процедурах отбора проб, которые несут очень низкий риск для пациента и, следовательно, могут использоваться в очень широком масштабе и открывать двери для многочисленных захватывающих применений.
The authors have nothing to disclose.
Этот проект был поддержан грантами Министерства образования и исследований Германии (FKZ 82DZL004A1 до M.A.M) и Немецкого исследовательского фонда (SFB-TR84TP B08 to M.A.M). Работа, описанная в этой рукописи, была поддержана Немецким центром исследований легких (DZL) и EMBL Heidelberg через стипендию PhD для M.G. Мы благодарим Й. Шаттерни, С. Бутца и Х. Шойермана за экспертную техническую помощь.
100 µm Nylon cell strainer | Corning Inc. | 431752 | |
2300 EnSpire (Multilabel Plate Reader) | PerkinElmer | ||
35x10mm Dish, Nunclon Delta | Thermo Fisher Scientific | 150318 | |
40 µm Nylon cell strainer | Corning Inc. | 431750 | |
50 mL tubes | Sarstedt | 10535253 | |
7-AAD, viability dye | Bio Legend | 420404 | 5 µL/100 µL |
Balance | OHAUS Instruments (Shanghai) Co., Ltd. | PR124 | |
BD Falcon Round-Bottom Tubes 5 mL | BD Bioscience | 352054 | |
BD LSRFortessa cell analyzer | BD Bioscience | ||
black flat bottom 96 well half area plate | Corning Life Science | 3694 | |
Cathepsin G | Elastin Products Company | SG623 | |
Cathepsin G Inhibitor I | Merck KGaA | 219372 | |
Centrifuge 5418R | Eppendorf AG | EP5401000137 | |
Combitips advanced 1.0 mL | Eppendorf AG | 0030 089 430 | |
cOmplete proteinase inhibitor | Roche | 11697498001 | |
Countig chambers improved Neubauer | Glaswarenfabrik Karl Hecht GmbH & Co KG | 40442 | |
coverslips Ø 25mm | Thermo Fisher Scientific | MENZCB00250RA003 | |
Cytospin 4 | Thermo Fisher Scientific | ||
DRAQ5 (nuclear stain) | BioStatus Limited | DR50050 | 1:10000 |
FACSDiva software, v8.0.1 | BD Bioscience | ||
FcBlock | BD Bioscience | 564219 | |
Fiji (Fiji Is Just ImageJ) | fiji.sc | ||
Flow Jo software, v10 | TreeStar | ||
FluoQ Plugin, v3-97 | |||
Heraeus Megafuge 16R | Thermo Fisher Scientific | ||
Human Sputum Leucocyte Elastase | Elastin Products Company | SE563 | |
Leica SP8 confocal microscope | Leica Microsystems | ||
Mini Rock-Shaker | PEQLAB Biotechnologie GmbH | MR-1 | |
mouse anti-human CD14, Pe-Cy7, clone M5E2 | BD Bioscience | 557742 Lot:8221983 | 1:50 |
mouse anti-human CD16, AF700, clone 3G8 | BD Bioscience | 557820 Lot:8208791 | 1:50 |
mouse anti-human CD45, APC-Cy7, clone 2D1 | BD Bioscience | 557833 Lot:8059688 | 1:33 |
mouse anti-human CD66b, PE/Dazzel 594, clone G10F5 | BioLegend | 305122 Lot:B241921 | 1:50 |
mSAM | in house | 2 mM | |
Multipette plus | Eppendorf AG | ||
NEmo-1 | SiChem | SC-0200 | 1 mM |
NEmo-2E | SiChem | SC-0201 | 2 mM |
Pari Boy SX with an LC Sprint jet nebulizer | Pari | 085G3001 | |
phosphate buffered saline | Gibco | 10010-015 | |
ROTI Histokitt (mounting medium) | Carl Roth GmbH + Co.KG | 6638.1 | |
Salbutamol | Teva GmbH | ||
Sivelestat | Cayman Chemicals | 17779 | |
Sputolysin | Calbiochem | 560000-1SET | |
sSAM | in house | 2 mM | |
SuperFrost Plus Adhesion slides | Thermo Fisher Scientific | 10149870 | |
Trypan Blue solution | Sigma-Aldrich | T8154 |