Se presenta un protocolo para sintetizar nanopartículas de oro de ~12 nm de diámetro (nanopartículas Au) en un disolvente orgánico. Las nanopartículas de oro están tapadas con ligandos de oleilamina para prevenir la aglomeración. Las nanopartículas de oro son solubles en disolventes orgánicos como el tolueno.
Las nanopartículas de oro (nanopartículas Au) de ~12 nm de diámetro se sintetizaron inyectando rápidamente una solución de 150 mg (0,15 mmol) de ácido tetracloroáurico en 3,0 g (3,7 mmol, 3,6 mL) de oleilamina (grado técnico) y 3,0 mL de tolueno en una solución hirviendo de 5,1 g (6,4 mmol, 8,7 mL) de oleilamina en 147 mL de tolueno. Mientras se hierve y se mezcla la solución de reacción durante 2 horas, el color de la mezcla de reacción cambió de claro, a amarillo claro, a rosa claro, y luego lentamente a rojo oscuro. El calor se apagó y se permitió que la solución se enfriara gradualmente a temperatura ambiente durante 1 hora. Las nanopartículas de oro se recogieron y separaron de la solución utilizando una centrífuga y se lavaron tres veces; vortexing y dispersión de las nanopartículas de oro en 10 porciones de mL de tolueno, y luego precipitando las nanopartículas de oro mediante la adición de 40 mL porciones de metanol y girarlos en una centrífuga. La solución se decantó para eliminar los subproductos restantes y los materiales de partida no reaccionados. El secado de las nanopartículas de oro en un ambiente de vacío produjo un pellet negro sólido; que podrían almacenarse durante largos períodos de tiempo (hasta un año) para su uso posterior, y luego volver a resolverse en disolventes orgánicos como el tolueno.
Las nanopartículas de oro son una clase interesante y útil de nanomateriales que son objeto de muchos estudios de investigación y aplicaciones; tales como biología1,medicina2,nanotecnología3y dispositivos electrónicos4. La investigación científica sobre nanopartículas de oro se remonta a 1857, cuando Michael Faraday realizó estudios fundacionales sobre la síntesis y las propiedades de las nanopartículas de oro5. Las dos principales técnicas “ascendentes” para sintetizar nanopartículas de oro son el método de reducción de citrato6,7,8 y el método de síntesis orgánica en dos fases9,10. El método de reducción de citrato “Turkevich” produce nanopartículas de oro bastante monodispersas de menos de 20 nm de diámetro, pero la polidispersidad aumenta para nanopartículas de oro por encima de 20 nm de diámetro; mientras que el método bínfásico “Brust-Schiffrin” utiliza la estabilización del ligando azufre/tiol para producir nanopartículas de oro de hasta ~10 nm de diámetro11. Las soluciones de nanopartículas de oro que se sintetizan previamente utilizando estos métodos están disponibles comercialmente. Para aplicaciones donde no son necesarios grandes volúmenes, alta monodispersidad y grandes diámetros de nanopartículas de oro, puede ser suficiente comprar y utilizar estas nanopartículas de oro pre-sintetizadas de los proveedores. Sin embargo, las nanopartículas de oro que se almacenan en solución, como muchas de las que están disponibles comercialmente, pueden degradarse con el tiempo a medida que las nanopartículas comienzan a aglomerarse y formar grupos. Alternativamente, para aplicaciones a gran escala, proyectos a largo plazo en los que las nanopartículas de oro deben usarse con frecuencia o durante un largo período de tiempo, o en los que existen requisitos más estrictos para la monodispersidad y el tamaño de las nanopartículas de oro, puede ser deseable realizar la síntesis de nanopartículas de oro uno mismo. Al realizar el proceso de síntesis de nanopartículas de oro, uno tiene la oportunidad de controlar potencialmente varios parámetros de síntesis, como la cantidad de nanopartículas de oro que se producen, el diámetro de las nanopartículas de oro, la monodispersidad de las nanopartículas de oro y las moléculas utilizadas como ligandos de tapado. Además, estas nanopartículas de oro pueden almacenarse como pellets sólidos en un ambiente seco, ayudando a preservar las nanopartículas de oro para que puedan ser utilizadas en un momento posterior, hasta un año después, con una degradación mínima en la calidad. También existe el potencial de ahorro de costos y la reducción de residuos mediante la fabricación de nanopartículas de oro en volúmenes más grandes y luego almacenarlas en un estado seco para que duren más tiempo. En general, la síntesis de nanopartículas de oro proporciona ventajas convincentes que pueden no ser factibles con las nanopartículas de oro disponibles en el mercado.
Con el fin de darse cuenta de las muchas ventajas que son posibles con la síntesis de nanopartículas de oro, se presenta un proceso aquí para sintetizar nanopartículas de oro. El proceso de síntesis de nanopartículas de oro que se describe es una versión modificada de un proceso que fue desarrollado por Hiramatsu y Osterloh12. Las nanopartículas de oro se sintetizan típicamente con un diámetro de ~ 12 nm utilizando este proceso de síntesis. Los principales reactivos químicos que se utilizan para realizar el proceso de síntesis de nanopartículas de oro son el ácido tetracloroauro (HAuCl4),la oleilamina y el tolueno. Una guantera de nitrógeno se utiliza para proporcionar un ambiente seco inerte para el proceso de síntesis de nanopartículas de oro, porque el ácido tetracloroáurico es sensible al agua / humedad. Las nanopartículas de oro se encapsulan con moléculas de ligando de oleilamina para evitar que las nanopartículas de oro se aglomeren en solución. Al final del proceso de síntesis, las nanopartículas de oro se secan en un ambiente de vacío para que puedan almacenarse y conservarse en estado seco para su uso posterior, hasta un año después. Cuando las nanopartículas de oro están listas para ser utilizadas, se pueden resuspended en solución en disolventes orgánicos como el tolueno.
Realizar el protocolo de síntesis de nanopartículas de oro como se presentó anteriormente debe producir nanopartículas de oro con ~ 12 nm de diámetro y monodispersidad bastante alta (± 2 nm). Sin embargo, hay algunos pasos críticos y parámetros de proceso que se pueden ajustar para cambiar potencialmente el tamaño / diámetro y la monodispersidad / polidispersidad de las nanopartículas de oro. Por ejemplo, después de inyectar la solución precursora en el recipiente de reacción y permitir que el ácido tetrac…
The authors have nothing to disclose.
Los autores desean agradecer a Frank Osterloh por su ayuda con los métodos de síntesis de nanopartículas. A los autores les gustaría reconocer el apoyo financiero de la National Science Foundation (1807555 &203665) y la Semiconductor Research Corporation (2836).
50 mL Conical Centrifuge Tubes with Plastic Caps (Quantity: 12) | Ted Pella, Inc. | 12942 | used for cleaning/storing gold nanoparticle solution/precipitate (it's best to use 12 tubes, to allow the gold nanoparticles from the synthesis process to last up to one year (e.g., 1 tube per month)) |
Acetone | Sigma-Aldrich | 270725-2L | solvent for cleaning glassware/tubes |
Acid Wet Bench | N/A | N/A | for cleaning chemical reaction glassware/supplies with gold etchant solution (part of wet chemical lab facilities) |
Aluminum Foil | Reynolds | B08K3S7NG1 | for covering glassware after cleaning it to keep it clean |
Burette Clamps | Fisher Scientific | 05-769-20 | for holding the condenser tube and reaction vessel during the synthesis process (located in the nitrogen glove box) |
Centrifuge (with 50 mL Conical Centrifuge Tube Rotor/Adapter) | ELMI | CM-7S | for spinning the gold nanoparticles in solution and precipitating/collecting them at the bottom of the 50 mL conical centrifuge tubes |
DI Water | Millipore | Milli-Q Direct | deionized water |
Fume Hood | N/A | N/A | for cleaning laboratory glassware and supplies with solvents (part of wet chemical lab facilities) |
Glass Beaker (600 mL) | Ted Pella, Inc. | 17327 | for holding reaction vessel, condenser tube, glass pipette, and magnetic stir bar during cleaning with gold etchant and then with water |
Glass Beakers (400 mL) (Quantity: 2) | Ted Pella, Inc. | 17309 | for measuring toluene and gold etchant |
Glass Graduated Cylinder (5 mL) | Fisher Scientific | 08-550A | for measuring toluene and oleylamine for injection |
Glass Graduated Pipette (10 mL) | Fisher Scientific | 13-690-126 | used with the rubber bulb with valves to inject the gold nanoparticle precursor solution into the reaction vessel |
Gold Etchant TFA | Sigma-Aldrich | 651818-500ML | (with potassium iodide) for cleaning reaction vessel, condenser tube, magnetic stir bar, glass pipette [alternatively, use Aqua Regia] |
Isopropanol | Sigma-Aldrich | 34863-2L | solvent for cleaning glassware/tubes |
Liebig Condenser Tube (~500 mm) (24/40) | Fisher Scientific | 07-721C | condenser tube, attaches to glass reaction vessel |
Magnetic Stirring Bar | Fisher Scientific | 14-513-51 | for stirring reaction solution during the synthesis process |
Methanol (≥99.9%) | Sigma-Aldrich | 34860-2L-R | new, ≥99.9% purity (for washing gold nanoparticles after synthesis) |
Microbalance (mg resolution) | Accuris Instruments | W3200-120 | for weighing tetrachloroauric acid powder (located in the nitrogen glove box) |
Micropipette (1000 µL) | Fisher Scientific | FBE01000 | for measuring and dispensing liquid chemicals such as oleylamine and toluene (if using micropipette instead of graduated cylinder for measurement) |
Micropipette Tips (1000 µL) | USA Scientific | 1111-2831 | for measuring and dispensing liquid chemicals such as oleylamine and toluene (if using micropipette instead of graduated cylinder for measurement) |
Nitrile Gloves | Ted Pella, Inc. | 81853 | personal protective equipment (PPE), for protection, and for keeping nitrogren glove box gloves clean |
Nitrogen Glove Box | M. Braun | LABstar pro | for performing gold nanoparticle synthesis in a dry and inert environment |
Non-Aqueous 20 mL Glass Vials with PTFE-Lined Caps (Quantity: 2) | Fisher Scientific | 03-375-25 | for weighing tetrachloroauric acid powder and mixing with oleylamine and toluene to make injection solution |
Oleylamine (Technical Grade, 70%) | Sigma-Aldrich | O7805-100G | technical grade, 70%, preferably new, stored in the nitrogen glove box |
Parafilm M Sealing Film (2 in. x 250 ft) | Sigma-Aldrich | P7543 | for sealing the gold nanoparticles in the 50 mL centrifuge tubes after the synthesis process is over |
Round Bottom Flask (250 mL) (24/40) | Wilmad-LabGlass | LG-7291-234 | glass reaction vessel, attaches to condenser tube |
Rubber Bulb with Valves (Rubber Bulb-Type Safety Pipet Filler) | Fisher Scientific | 13-681-50 | used with the long graduated glass pipette to inject the gold nanoparticle precursor solution into the reaction vessel |
Rubber Hoses (PVC Tubes) (Quantity: 2) | Fisher Scientific | 14-169-7D | for connecting the condenser tube to water inlet/outlet ports |
Stainless Steel Spatula | Ted Pella, Inc. | 13590-1 | for scooping tetrachloroauric acid powder from small container |
Stand (Base with Rod) | Fisher Scientific | 12-000-102 | for holding the condenser tube and reaction vessel during the synthesis process (located in the nitrogen glove box) |
Stirring Heating Mantle (250 mL) | Fisher Scientific | NC1089133 | for holding and supporting reaction vessel sphere, while heating with magnetic stirrer rotating the magnetic stirrer bar |
Tetrachloroauric(III) Acid (HAuCl4) (≥99.9%) | Sigma-Aldrich | 520918-1G | preferably new or never opened, ≥99.9% purity, stored in fridge, then opened only in the nitrogen glove box, never exposed to air/water/humidity |
Texwipes / Kimwipes / Cleanroom Wipes | Texwipe | TX8939 | for miscellaneous cleaning and surface protection |
Toluene (≥99.8%) | Sigma-Aldrich | 244511-2L | new, anhydrous, ≥99.8% purity |
Tweezers | Ted Pella, Inc. | 5371-7TI | for poking small holes in aluminum foil, and for removing Parafilm |
Vortexer | Cole-Parmer | EW-04750-51 | for vortexing the gold nanoparticles in toluene in 50 mL conical centrifuge tubes to resuspend the gold nanoparticles into the toluene solution |