Apresentamos um protocolo para identificação e quantitação das principais classes de metabólitos solúveis em água no levedura Saccharomyces cerevisiae. O método descrito é versátil, robusto e sensível. Permite a separação de isômeros estruturais e formas estereogômicas de metabólitos solúveis em água uns dos outros.
Metabolômica é uma metodologia utilizada para a identificação e quantificação de muitos intermediários de baixo peso molecular e produtos do metabolismo dentro de uma célula, tecido, órgão, fluido biológico ou organismo. A metabolômica tradicionalmente se concentra em metabólitos solúveis em água. O metabolome solúvel em água é o produto final de uma complexa rede celular que integra vários fatores genômicos, epigenômicos, transcriômicos, proteômicos e ambientais. Assim, a análise metabolômica avalia diretamente o resultado da ação para todos esses fatores em uma infinidade de processos biológicos dentro de diversos organismos. Um desses organismos é o fermento saccharomyces cerevisiae, um eucariote unicelular com o genoma totalmente sequenciado. Como a S. cerevisiae é favorável a análises moleculares abrangentes, é usada como modelo para dissecar mecanismos subjacentes a muitos processos biológicos dentro da célula eucariótica. Um método analítico versátil para a avaliação quantitativa robusta, sensível e precisa do metabolome solúvel em água forneceria a metodologia essencial para dissecar esses mecanismos. Aqui apresentamos um protocolo para as condições otimizadas de atividade metabólica saciando e extração metabólito solúvel em água a partir de células de S. cerevisiae. O protocolo também descreve o uso de cromatografia líquida juntamente com espectrometria de massa tandem (LC-MS/MS) para a análise quantitativa dos metabólitos solúveis em água extraídos. O método LC-MS/MS de metabolômica não-direcionada descrito aqui é versátil e robusto. Permite a identificação e quantificação de mais de 370 metabólitos solúveis em água com diversas propriedades estruturais, físicas e químicas, incluindo diferentes isômeros estruturais e formas estereogômicas desses metabólitos. Estes metabólitos incluem várias moléculas portadoras de energia, nucleotídeos, aminoácidos, monossacarídeos, intermediários de glicólise e intermediários do ciclo tricarboxílico. O método LC-MS/MS de metabolômica não-direcionada é sensível e permite a identificação e a quantitação de alguns metabólitos solúveis em água em concentrações tão baixas quanto 0,05 pmol/μL. O método tem sido usado com sucesso para avaliar metabóboles solúveis em água de células de levedura silvestre e mutantes cultivadas em diferentes condições.
Metabólitos solúveis em água são intermediários de baixo peso molecular e produtos do metabolismo que contribuem para processos celulares essenciais. Esses processos evolutivamente conservados incluem a conversão de nutrientes em energia utilizável, síntese de macromoléculas, crescimento e sinalização celular, controle do ciclo celular, regulação da expressão genética, resposta ao estresse, regulação pós-translacional do metabolismo, manutenção da funcionalidade mitocondrial, tráfico celular vesicular, autofagia, envelhecimento celular e morte celular regulada1,2,3.
Muitos desses papéis essenciais de metabólitos solúveis em água foram descobertos por estudos na levedura S. cerevisiae1,3,4,7,9,14,15,16,17,18,19,20,21,22. Este eucariote unicelular é um organismo modelo útil para dissecar mecanismos através dos quais metabólitos solúveis em água contribuem para processos celulares devido à sua comodidade às análises biológicas bioquímicas avançadas, genéticas e moleculares23,24,25,26. Embora os métodos LC-MS/MS de metabolômica não-direcionada tenham sido utilizados para estudar os papéis de metabólitos solúveis em água emleveduras brotantes 3,18,22,27, este tipo de análise requer a melhoria de sua versatilidade, robustez, sensibilidade e capacidade de distinguir entre diferentes isômeros estruturais e formas estereotipadas desses metabólicos.
Os últimos anos são marcados por avanços significativos na aplicação dos métodos LC-MS/MS de metabolômica não direcionada ao perfil de metabólitos solúveis em água in vivo. No entanto, muitos desafios no uso dessa metodologia permanecem2,28,29,30,31,32,33,34,35,36. Esses desafios incluem o seguinte. Em primeiro lugar, as concentrações intracelulares de muitos metabólitos solúveis em água estão abaixo de um limiar de sensibilidade para os métodos atualmente utilizados. Em segundo lugar, a eficiência da saciamento da atividade metabólica é muito baixa, e a extensão do vazamento celular associado à extinção de metabólitos intracelulares é muito alta para os métodos atuais; portanto, os métodos atualmente utilizados subestimam as concentrações intracelulares de metabólitos solúveis em água. Em terceiro lugar, os métodos existentes não podem diferenciar os isômeros estruturais (ou seja, moléculas com a mesma fórmula química, mas conectividade atômica diferente) ou estereomers (ou seja, moléculas com a mesma fórmula química e conectividade atômica, mas com o arranjo atômico diferente no espaço) de metabólitos específicos; isso impede a anotação correta de certos metabólitos pelos métodos atualmente utilizados. Em quarto lugar, as bases de dados on-line espectrais existentes de íons-pais (MS1) e íons secundários (MS2) estão incompletas; isso afeta a identificação e a quantitação corretas de metabólitos específicos utilizando os dados brutos LC-MS/MS produzidos com a ajuda dos métodos atuais. Em quinto lugar, os métodos existentes não podem usar um único tipo de extração metabólito para recuperar todas ou a maioria das classes de metabólitos solúveis em água. Em sexto lugar, os métodos existentes não podem usar um único tipo da coluna LC para separar-se entre si todas ou a maioria das classes de metabólitos solúveis em água.
Aqui, otimizamos as condições para a extinção da atividade metabólica dentro das células de S. cerevisiae, mantendo a maioria dos metabólitos solúveis em água dentro dessas células antes da extração, e extraindo a maioria das classes de metabólitos solúveis em água de células de levedura. Desenvolvemos um método versátil, robusto e sensível para a identificação e quantificação baseada em LC-MS/MS de mais de 370 metabólitos solúveis em água extraídos de células S. cerevisiae. Este método de metabolomia não-direcionada permite avaliar as concentrações intracelulares de várias moléculas portadoras de energia, nucleotídeos, aminoácidos, monossacarídeos, intermediários de glicólise e intermediários do ciclo tricarboxílico. O método desenvolvido LC-MS/MS permite a identificação e quantificação de diferentes isômeros estruturais e formas estereosméricas de metabólitos solúveis em água com diversas propriedades estruturais, físicas e químicas.
Para utilizar com sucesso o protocolo aqui descrito, siga as medidas preventivas descritas abaixo. Clorofórmio e metanol extraem várias substâncias de plásticos de laboratório. Portanto, lide com eles com cautela. Evite o uso de plásticos em etapas que envolvam contato com qualquer um desses dois solventes orgânicos. Use pipetas de vidro borossilicato para estas etapas. Levante essas pipetas com clorofórmio e metanol antes de usar. Use apenas pontas de micropipette e tubos feitos de polipropileno resistente a sol…
The authors have nothing to disclose.
Somos gratos aos atuais e antigos membros do laboratório Titorenko pelas discussões. Reconhecemos o Centro de Aplicações Biológicas da Espectrometria de Massa, o Centro de Genômica Estrutural e Funcional e o Centro de Microscopia e Imagem Celular (todos na Universidade de Concórdia) por serviços de destaque. Este estudo foi apoiado por bolsas do Conselho de Pesquisa em Ciências Naturais e Engenharia (NSERC) do Canadá (RGPIN 2014-04482 e CRDPJ 515900 – 17). K.M. foi apoiado pela Concordia University Armand C. Archambault Fellowship e pelo Prêmio de Excelência da Universidade de Concórdia.
Chemicals | |||
Acetonitrile | Fisher Scientific | A9554 | |
Ammonium acetate | Fisher Scientific | A11450 | |
Ammonium bicarbonate | Sigma | 9830 | |
Bactopeptone | Fisher Scientific | BP1420-2 | |
Chloroform | Fisher Scientific | C297-4 | |
Glucose | Fisher Scientific | D16-10 | |
L-histidine | Sigma | H8125 | |
L-leucine | Sigma | L8912 | |
L-lysine | Sigma | L5501 | |
Methanol | Fisher Scientific | A4564 | |
Methanol | Fisher Scientific | A4564 | |
Propidium iodide | Thermo Scientific | R37108 | |
Uracil | Sigma | U0750 | |
Yeast extract | Fisher Scientific | BP1422-2 | |
Hardware equipment | |||
500 ml centrifuge bottles | Beckman | 355664 | |
Agilent 1100 series LC system | Agilent Technologies | G1312A | |
Beckman Coulter Centrifuge | Beckman | 6254249 | |
Beckman Coulter Centrifuge Rotor | Beckman | JA-10 | |
Centra CL2 clinical centrifuge | Thermo Scientific | 004260F | |
Digital thermometer | Omega | HH509 | |
Foam Tube Holder Kit with Retainer | Thermo Scientific | 02-215-388 | |
SeQuant ZIC-pHILIC zwitterionic-phase column (5µm polymer 150 x 2.1 mm) | Sigma Milipore | 150460 | |
Thermo Orbitrap Velos MS | Fisher Scientific | ETD-10600 | |
Ultrasonic sonicator | Fisher Scientific | 15337416 | |
Vortex | Fisher Scientific | 2215365 | |
ZORBAX Bonus-RP, 80Å, 2.1 x 150 mm, 5 µm | Agilent Technologies | 883725-901 | |
Laboratory materials | |||
2-mL Glass sample vials with Teflon lined caps | Fisher Scientific | 60180A-SV9-1P | |
Glass beads (acid-washed, 425-600 μm) | Sigma-Aldrich | G8772 | |
Hemacytometer | Fisher Scientific | 267110 | |
15-mL High-speed glass centrifuge tubes with Teflon lined caps | PYREX | 05-550 | |
Software | |||
Compound Discoverer 3.1 | Fisher Scientific | V3.1 | |
Yeast strain | |||
Yeast strain BY4742 | Dharmacon | YSC1049 |