Aquí, presentamos un método efectivo y eficiente para las inyecciones de venas de la cola de roedores utilizando un dispositivo de calentamiento / restricción de diseño único. Al agilizar el inicio de los procesos de vasodilatación y restricción, este protocolo permite inyecciones intravenosas precisas y oportunas de grandes grupos de animales con una angustia mínima.
En modelos de roedores, las inyecciones de venas de la cola son métodos importantes para la administración intravenosa de agentes experimentales. Las inyecciones de la vena de la cola generalmente implican el calentamiento del animal para promover la vasodilatación, lo que ayuda tanto en la identificación de los vasos sanguíneos como en la colocación de la aguja en la luz del vaso mientras se restringe de forma segura al animal. Aunque las inyecciones de la vena de la cola son procedimientos comunes en muchos protocolos y no se consideran altamente técnicas si se realizan correctamente, las inyecciones precisas y consistentes son cruciales para obtener resultados reproducibles y minimizar la variabilidad. Los métodos convencionales para inducir la vasodilatación antes de las inyecciones de la vena de la cola generalmente dependen del uso de una fuente de calor como una lámpara de calor, almohadillas térmicas eléctricas / recargables o agua precalentada a 37 ° C. A pesar de ser fácilmente accesibles en un entorno de laboratorio estándar, estas herramientas evidentemente sufren de una capacidad termorreguladora deficiente / limitada. Del mismo modo, aunque existen diversas formas de dispositivos de sujeción disponibles comercialmente, deben usarse con cuidado para evitar traumas a los animales. Estas limitaciones de los métodos actuales crean variables innecesarias en los experimentos o dan lugar a resultados variables entre experimentos y/o laboratorios.
En este artículo, demostramos un protocolo mejorado utilizando un dispositivo innovador que combina un dispositivo de calentamiento independiente, regulado térmicamente con una unidad de restricción ajustable en un sistema para una inyección eficiente de venas de la cola aerodinámicas. El ejemplo que utilizamos es un modelo intravenoso de infección fúngica del torrente sanguíneo que resulta en sepsis. El aparato de calentamiento consiste en una caja acrílica reflectante de calor instalada con un termostato automático ajustable para mantener la temperatura interna en un umbral preestatalado. Del mismo modo, el ancho y la altura del aparato de restricción de conos se pueden ajustar para acomodar de manera segura varios tamaños de roedores. Con las características avanzadas y versátiles del dispositivo, la técnica que se muestra aquí podría convertirse en una herramienta útil en una variedad de áreas de investigación que involucran modelos de roedores que emplean inyecciones de venas de la cola.
El uso de modelos animales con roedores ha sido un elemento básico de la investigación biomédica. Numerosas cepas endogámicas y desanguada, así como líneas modificadas genéticamente, están disponibles y se utilizan de forma rutinaria en laboratorios de todo el mundo. La inyección de la vena de la cola es uno de los métodos esenciales en modelos de roedores que requieren la administración intravenosa (i.v.) de agentes experimentales. En general, las inyecciones intravenosas tienen grandes ventajas sobre otras vías de administración, como altas tasas de absorbancia al eludir los tejidos locales y el tracto digestivo y una alta tolerancia a soluciones de una amplia gama de concentraciones o pH no fisiológico1,2,3,4. Entre otras rutas viables de I.V. (por ejemplo, venas safenas, seno venoso retroorbital), las venas de la cola se consideran los vasos sanguíneos más seguros y de más fácil acceso en roedores2,3,5,6. Por lo tanto, la inyección de la vena de la cola se ha empleado ampliamente en una variedad de modelos deroedores,incluidos los modelos de enfermedades infecciosas7,8,9,trasplante de materiales biológicos10,11,evaluación deterapias preclínicas12,13y análisis toxicológicos14,15.
La consistencia y la precisión de la dosificación son un requisito crítico en las inyecciones exitosas de la vena de la cola. Sorprendentemente, la evaluación cuantitativa y cualitativa de las inyecciones de venas de la cola en la literatura implica frecuentes inyecciones erróneas16,17. Un estudio informó que doce de cada treinta inyecciones realizadas por inyectores entrenados dejaron más del 10% de las dosis inyectadas dentro de la cola18. Además, la seguridad y la comodidad del animal que recibe inyecciones en las venas de la cola debe ser una preocupación principal durante el procedimiento. La restricción inadecuada puede conducir a lesiones y una variedad de patologías relacionadas con el estrés (por ejemplo, pérdida de peso, respuestas inmunes deterioradas) que podrían introducir variables sustanciales en la calidad de la muestra19,20. Estos errores pueden causar una mayor variabilidad en los datos y una reproducibilidad deficiente, lo que afecta negativamente los resultados del estudio.
La inducción de la dilatación vascular en el animal es a menudo necesaria cuando se realizan inyecciones de venas de la cola debido al pequeño diámetro del vaso, estimado en 300 μm en ratones21. La vasodilatación mejora la visibilidad de las venas de la cola y ayuda a lograr una alineación óptima de la vena de la aguja dentro de la luz venosa. Los laboratorios han reportado una variedad de métodos, como sumergir la cola en agua tibia22,aplicar calor a la cola usando una cortina, lámpara o secador de pelo caliente23,24,o colocar al animal en un ambiente cálido usando una almohadilla térmica, incubadora o caja combinada con una de estas fuentes de calor25. Los dispositivos pueden ser de fabricación propia para fines específicos o disponibles en proveedores comerciales. Sin embargo, muchos carecen de capacidades termorreguladoras y, si las hay, la temperatura del dispositivo está mal mantenida y, a menudo, sujeta a variaciones en la temperatura ambiente. Del mismo modo, el uso de un dispositivo de sujeción es necesario para las inyecciones de la vena de la cola, ya que no se recomienda el uso de anestesia26,27. Se han desarrollado varios tipos de dispositivos de restricción comerciales o específicos de laboratorio. Por lo general, el animal se coloca en un tubo cónico desechable de 50 ml4,paredes de plexiglás ranuradas, un túnel o cono28,todos los cuales permiten una amplia exposición de la cola al tiempo que restringen los movimientos del animal. Sin embargo, la mayoría de los sujetadores tienen limitaciones de tamaño debido a la rigidez de los materiales. Además, los dispositivos modernos de alta complejidad, a pesar de los diseños prácticos y sofisticados, no parecen ser factibles para inyecciones que involucran a grandes grupos de animales22.
Los modelos de ratón de infección del torrente sanguíneo y sepsis asociada son un excelente ejemplo de situaciones que requieren el uso de esta técnica. Entre toda la etiología microbiana de la sepsis clínica grave, la sepsis fúngica es a menudo una condición fatal con tasas de mortalidad de >40% a pesar de la terapia antifúngica29. De hecho, la infección por Candida albicans ha sido reportada como la cuarta causa principal de infección del torrente sanguíneo adquirida en el hospital (candidemia)30,31. En la candidiasis intraabdominal, los microorganismos en el tracto gastrointestinal pueden diseminarse a través del torrente sanguíneo y causar sepsis polimicrobial con una mortalidad aún mayor32,33,34. Como la mayoría de los casos de candidemia nosocomial surgen de catéteres de línea central contaminados o dispositivos médicos permanentes35,36, i.v. la inoculación con C. albicans por inyección de vena de la cola puede reflejar de cerca el desarrollo de sepsis humana y ha sido un método básico en un modelo de ratón de candidiasis diseminada hematógenamente37,38. En este modelo, la mortalidad que se produce en días puede ampliarse o acortarse ajustando el C. albicans i.v. inóculo39,40,41.
Recientemente, nuestro laboratorio ha desarrollado un protocolo innovador para una inyección de vena de cola optimizada utilizando un dispositivo innovador equipado con una unidad de calentamiento termorregulada, emparejada con una unidad de restricción ajustable, en un sistema conveniente. Este protocolo permite a los investigadores realizar inyecciones en las venas de la cola de manera precisa y oportuna, mientras que los animales pueden ser acondicionados y restringidos de manera segura para el procedimiento con una angustia mínima. Las técnicas demostradas aquí, con el uso del dispositivo avanzado de calentamiento y restricción, podrían servir como una herramienta útil en diversas áreas de investigación que emplean modelos de roedores.
La dosificación consistente y precisa son requisitos clave para la confiabilidad experimental en modelos animales. Esto es especialmente importante en los casos de administración i.v. donde la biodisponibilidad sistémica de los agentes inyectados es considerablemente mayor/más rápida que con otras vías de administración3. Por lo tanto, los errores en la inyección de la vena de la cola podrían tener un impacto perjudicial en los resultados del estudio. Históricamente, la inyección intraperitoneal (i.p.), en lugar de i.v., ha sido el método más común para el acceso sistémico en roedores debido a la simplicidad técnica y la conveniencia. Sin embargo, las vías de administración se vuelven más cruciales cuando se traducen las lecturas preclínicas de los animales a los entornos clínicos. Por lo tanto, existe la necesidad de una mejora continua en los protocolos de roedores que podrían facilitar la inyección exitosa de la vena de la cola.
El avance clave en el protocolo actual es el innovador dispositivo de calentamiento termorregulado que permite la inducción efectiva de la vasodilatación en roedores, lo que mejora drásticamente la visibilidad de las venas de la cola y la alineación de las agujas. Los métodos de calentamiento que están mal termorregulados (por ejemplo, lámparas), vasodilatadores tópicos o irritantes de la piel (por ejemplo, xilenos) no solo no son confiables, sino que también son inseguros para el animal y deben evitarse44. Contrariamente a otros métodos convencionales, como sumergir la cola en agua tibia, la capacidad de autorregulación de este dispositivo puede acondicionar de forma segura a múltiples animales simultáneamente. Además, este protocolo se fortalece aún más mediante el uso del dispositivo de sujeción diseñado de manera óptima y permite la inmovilización rápida y segura del animal en una posición que mejor muestre la vena lateral de la cola.
Los formatos de trompa transparentes que se ven en muchos sujetadores actuales, aunque prácticamente bien diseñados, requieren más tiempo de manejo con cada animal, prolongando así el proceso de sujeción45. Esto puede ser más problemático en cepas de roedores con rasgos agresivos que ofrecen una cooperación limitada46,47. Por el contrario, la estructura de cono semicerrada del dispositivo de sujeción permite un posicionamiento rápido del animal y ayuda a minimizar la duración de la restricción. En conjunto, el protocolo simplificado que utiliza el innovador sistema de calentamiento / restricción altamente optimizado acelera el procedimiento de inyección, lo que permite una dosificación rápida y efectiva de grandes grupos de animales. En nuestro laboratorio, normalmente completamos un procedimiento de inyección completo de 30 ratones, desde el tratamiento térmico hasta el monitoreo posterior a la inyección dentro de 1 h utilizando este protocolo.
A pesar de las características avanzadas, este dispositivo tiene algunas desventajas aparentes: la primera es el costo del dispositivo y el reemplazo rutinario de la bombilla en la cámara de calentamiento. Sin embargo, además de la eficiencia y la velocidad de las inyecciones, el dispositivo es duradero para uso repetido y compatible con los desinfectantes más comunes, lo que permite una limpieza exhaustiva del dispositivo entre usos. En conjunto, esto compensa la inversióninicial. Second, en situaciones con espacio de trabajo limitado, un inconveniente de este protocolo puede ser el requisito de un área de banco dedicada lo suficientemente grande como para colocar las dos unidades, una al lado de la otra, mientras se realiza la inyección. Sin embargo, debido a que el dispositivo se puede utilizar ampliamente en varios protocolos de roedores que involucran inyecciones intravenosas, es posible que el dispositivo pueda servir como un instrumento central similar a otros equipos de vivero comunales, como los vaporizadores de isoflurano. De todos modos, las dos unidades son fácilmente portátiles y se pueden empaquetar y guardar mientras no están en uso.
El modelo de desafío letal i.v. de sepsis fúngica murina descrito en este protocolo imita de cerca las infecciones del torrente sanguíneo por C. albicans en humanos y se ha utilizado ampliamente para estudiar la virulencia fúngica, probar la eficacia de las terapias antifúngicas y caracterizar las respuestas inmunes del huésped a la infección37,39,48. Para lograr una infección reproducible, la inoculación intravenosa a través de la inyección de la vena de la cola es el paso más vital del protocolo para garantizar la entrega precisa de los organismos en el torrente sanguíneo. De hecho, los animales responden de manera muy diferente a los diferentes niveles de desafíos de Candida i.v.; la administración de cantidades demasiado bajas de inóculo dará lugar a recuperaciones espontáneas no deseadas, mientras que los animales que reciben dosis demasiado altas sucumbirán prematuramente. La ventana específica de los tamaños de inóculo para un organismo dado para inducir un nivel constante de sepsis / mortalidad depende en gran medida tanto de las cepas de hongos como de las cepas de ratón.
El protocolo actual que utiliza ratones Webster suizos en el inóculo de 1 x 105 C. albicans de tipo salvaje indujo de manera reproducible la aparición de la morbilidad de la sepsis dentro de 1 día, seguida de una mortalidad progresiva que resultó en una letalidad del 100% en 5-7 días. Por el contrario, los inóculos superiores a 1 x10 5 suelen conducir a muertes aceleradas (es decir, 1-2 días a 1 x 106, 3-4 días a 5 x 105), y los inferiores a 1 x 105 son subletácimos. En línea con numerosos informes en la literatura, el uso de especies de Candida noalbicans en lugar de C. albicans resulta en una letalidad significativamente disminuida40,49. Además, la elección de las cepas de ratón, o incluso el origen de las colonias, puede tener un impacto considerable en los resultados de la infección debido a las diferentes susceptibilidades entre las cepas de ratón, según lo informado por otros39,40,41,50, 51,52,53,54,55. Por lo tanto, ambos deben tenerse en cuenta al diseñar experimentos.
Tras un desafío i.v. letal, las células fúngicas se propagan rápidamente por el torrente sanguíneo y comienzan a invadir múltiples órganos, entre los cuales los más afectados son los riñones41. Otros órganos afectados son el cerebro, el bazo y la médula ósea48,56. En cualquier caso, la sepsis aguda es la causa última de muerte en los primeros puntos de tiempo37. Como se muestra en los resultados representativos, la gravedad de la sepsis puede evaluarse cuantitativamente mediante el Mouse Clinical Assessment Score for Sepsis (M-CASS) basado en signos exhibidos de una afección de sepsis en animales desafiados43,57. Entre los varios marcadores sustitutos de sepsis letal, la hipotermia se ha sugerido como un predictor crítico de muerte inminente en sepsis clínica y experimental43,58,59.
Aunque no se han realizado estudios formales para comparar directamente los ratones endogámicos frente a los superconsanguidos en este modelo, los datos obtenidos del protocolo actual utilizando ratones Webster suizos de raza son excepcionalmente reproducibles en varios parámetros de sepsis, a pesar de la presunta heterogeneidad genética. En general, un patrón de mortalidad que cae dentro de los 3-5 días es un modelo firme de sepsis aguda, como lo demuestra la rápida elevación de la morbilidad de la sepsis y los niveles de marcadores inflamatorios a las pocas horas del desafío post-letal50,51. Para tiempos de supervivencia más largos (7-10 días), la mortalidad es probablemente el resultado de la carga microbiana que conduce a un daño tisular letal en los órganos diana y el sistema nervioso central. La elección de la sepsis o la carga microbiana se puede aplicar según sea necesario para evaluar las funciones inmunes o las respuestas a los regímenes antiinflamatorios o las terapias / vacunas antifúngicas, según lo determine el inóculo utilizado.
Además del modelo de desafío letal i.v., la infección intraabdominal con C. albicans en ratones a través de un desafío i.p. también puede conducir a candidiasis diseminada y sepsis posterior, aunque la coinoculación con el patógeno bacteriano, Staphylococcus aureus, aumenta sinérgicamente la mortalidad en comparación con la mono-infección por C. albicans 51,60,61. En el modelo de desafío letal i.p., se requieren inóculos microbianos sustancialmente más altos (1.75 x10 7C. albicans/ 8 x 107S. aureus por ratón) para causar peritonitis polimicrobiana y diseminación de los organismos desde la cavidad abdominal al torrente sanguíneo. Del mismo modo, la infección gastrointestinal con C. albicans en ratones tratados con agentes inmunosupresores y / o dañinos para la mucosa conduce a la translocación de las células fúngicas en el torrente sanguíneo y da lugar a sepsis fúngica62,63. A pesar de las rutas de inoculación distintivas, el mecanismo de sepsis fúngica subsiguiente es en gran medida análogo entre los tres modelos de enfermedad, que implica una respuesta proinflamatoria sistémica no controlada a Candida que conduce a la insuficiencia orgánica37,51,61. Del mismo modo, en los seres humanos, es este proceso de la respuesta del huésped, no simplemente la candidemia, lo que causa la alta morbilidad / mortalidad asociada con la candidiasis diseminada hematógenamente adquirida en entornos de atención médica64,65.
Utilizando el modelo actual de sepsis fúngica, demostramos aquí que la protección contra la infección letal por C. albicans se puede lograr mediante la inmunización/ vacunación i.v. previa a la inmunización con C. dubliniensis (avirulent) o mutantes atenuados de C. albicans, concomitante con una reducción significativa de la morbilidad por sepsis. La protección está mediada por células supresoras innatas derivadas de Mieloides Gr-1+ que parecen ser inducidas en la médula ósea como una forma de inmunidad innata entrenada66,67. Se están realizando esfuerzos para ampliar la comprensión de esta nueva forma de protección innata inmunomedida contra las infecciones del torrente sanguíneo por C. albicans.
En conclusión, el innovador dispositivo de calentamiento / restricción de roedores ha sido fundamental para avanzar en nuestra capacidad de realizar inyecciones intravenosas de estudios multigrupo en animales a gran escala de una manera eficiente y efectiva. Como tal, hemos acuñado el término, Mouse a Minute, para el dispositivo. Las especificaciones del dispositivo están disponibles del autor correspondiente previa solicitud de adquisición de un dispositivo similar. Las técnicas demostradas aquí podrían servir como una herramienta útil en modelos de roedores que emplean inyecciones de venas de la cola en una amplia gama de áreas de investigación.
The authors have nothing to disclose.
Este trabajo fue apoyado por la Fundación LSUHSC (PLF), y en parte por U54 GM104940 del Instituto Nacional de Ciencias Médicas Generales de los Institutos Nacionales de Salud, que financia el Centro de Ciencias Clínicas y Traslacionales de Louisiana.
Candida albicans strain DAY185 | Carnegie Melon University | N/A | provided by the laboratory of Aaron Mitchell |
Candida albicans strain efg1Δ/Δ cph1Δ/Δ | University of Tennessee Health Sciences Center | N/A | provided by the laboratory of Glen Palmer |
Candida dubliniensis strain Wü284 | Trinity College, Dublin, Ireland | N/A | provided by the laboratory of Gary Moran |
Mice | Charles River Laboratories | 551NCICr:SW | Female Swiss Webster; 6-8 weeks old |
Mice | Charles River Laboratories | 556NCIC57BL/6 | Female C57BL/6; 6-8 weeks old |
Needles, 27G, ½-in | Becton Dickinson | 305109 | can be substituted from other vendors |
Phosphate buffered saline (PBS) | GE | SH30028.02 | can be substituted from other vendors |
Rodent warming and restraining device (Mouse a Minute) | LSU Health | custom order | Mouse a Minute is available for custom ordering from LSU Health |
Sabouraud dextrose agar (SDA) | Becton Dickinson | 211584 | can be substituted from other vendors |
Syringes, 1 mL | Becton Dickinson | 309659 | can be substituted from other vendors |
Trypan blue solution | Sigma | T8154 | |
Yeast peptone dextrose (YPD) broth | Fisher Scientific | BP2469 | can be substituted from other vendors |