ニューロンへの多様なシナプス入力の統合は、自然なタイミングと回路の可塑性のためにすべてのシナプス前核を保存する準備で最もよく測定されますが、脳スライスは通常、多くの接続を切断します。インビボ回路活性を模倣しながら、インビトロ実験能力を維持する修飾脳スライスを開発しました。
インビトロスライスの電気生理学の技術は精密な電気および時間的決断の単細胞活動を測定する。脳スライスは、パッチクランプやイメージングのためにニューロンを適切に視覚化してアクセスするために比較的薄くする必要があり、脳回路のインビトロ検査は急性スライスに物理的に存在するものだけに限定されます。シナプス前核の大部分を維持しながらインビトロスライス実験の利点を維持するために、我々は新しいスライス調製物を開発した。この「ウェッジスライス」は、脳幹の内側オリボコクレア(MOC)ニューロンへの多様なモノラル、音駆動入力を特徴付けるために、パッチクランプ電気生理学の録音用に設計されました。これらのニューロンは、対側耳および対応する人工内核(CN)における刺激によって活性化されたニューロンから、その主要な刺激性および抑制性入力を受ける。非対称の脳スライスは、1つの半球の横端にあるロストロ・カウダル領域で最も厚く、反対側の半球の横端に向かって薄く設計されました。このスライスには、厚い側に、聴覚神経根が脳に聴覚刺激に関する情報を伝え、本質的なCN回路、および逆MOCニューロンに収束する不活性化および三シナプス阻害性の両方の経路が含まれている。記録は、スライスの薄い側のMOCニューロンから行われ、一般的なパッチクランプ実験のためにDIC光学を使用して視覚化されます。聴神経の直接刺激は、聴神経の脳幹に入る時に行われ、MOCニューロンのシナプス上流で本質的なCN回路活性およびシナプス可塑性が起こることを可能にする。この技術により、in vivo回路の活性化をスライス内で可能な限り近づけることができます。このウェッジスライス調製物は、インビトロスライス生理学の技術的利点と組み合わせて、回路分析が上流接続性と長距離入力の保存の恩恵を受ける他の脳回路に適用可能です。
神経回路の活動の観察は、理想的には、生体内の脳領域間のネイティブ感覚入力とフィードバック、および無傷の接続性で行われます。しかし、神経回路の単一細胞分解能を与える実験を行うことは、無傷の脳における技術的な課題によって依然として制限されている。生体内の細胞外電気生理学または多光子イメージング法は、インタクト神経系の活動を調査するために使用できますが、異なる入力がどのように統合されるかの解釈や閾値以下のシナプス入力の測定は困難なままです。インビボ全細胞記録はこれらの制限を克服するが、容易にアクセスされる脳領域でさえ、実行することは困難である。単一細胞分解能実験の技術的課題は、脳の深部に位置する特定のニューロン集団、または生体内の細胞を見つけるために遺伝的ツールを必要とする空間的に拡散集団(例えば、オプトロード記録と組み合わせたチャネロドプシンの遺伝的発現)または標識を記録した後のポストホックの細胞化学的同定(例えば神経伝達特異的マーカーを有する)でさらに増幅される。脳幹の腹側表面の近くに拡散して位置している内側オリボコクリア(MOC)ニューロンは、上記の制限1に苦しんで、生体内実験のためにアクセスすることは非常に困難です。
脳のスライス(約100〜500μmの厚さ)は、同じスライス2、3、4、5、6、7、8、9に含まれる接続ニューロンの物理的な分離のために、聴覚脳幹回路を含む脳回路を研究するために長い間使用されてきました。より厚いスライス(>1 mm)を用いた実験は、内側優れたオリーブ10,11を含む優れたオリバリ複合体(SOC)の領域における二国間入力の統合方法を理解するために他の研究室で採用されている。これらのスライスは、聴覚神経(AN)の軸索がスライス内にそのまま残り、CNでシナプス神経伝達物質の放出を開始するために電気的に刺激されるように調製され、音に反応する第一次聴覚ニューロンの活性を模倣した。これらの厚いスライスの1つの大きな欠点は、パッチクランプ電気生理学的記録(「パッチング」)のためのニューロンの可視性です。この領域の多数の軸索が12歳、13歳、14歳、15歳でミリン化され、典型的で薄い脳スライスでも組織が光学的に密で隠れたニューロンを作り出すにつれて、パッチ適用はますます困難になります。私たちの目標は、インビボ録音の回路接続性に似ていますが、脳スライスの視覚的にガイドされたパッチクランプ電気生理学の高スループットと高解像度の記録能力を備えたインビトロ製剤を作成することです。
私たちの研究室では、MOCニューロンを含む聴覚系のニューロンの生理学を調査しています。これらのコリン作動性ニューロンは、外毛細胞(OHCs)16、17、18、19、20の活性を調節することによって、内毛にフィードバックを提供する。以前の研究では、この変調は、21、22、23、24、25、26および音響外傷から27、28、29、30、31、32、33からの保護における利得制御の役割を果たしていることを示している。マウスにおいて、MOCニューロンは、聴覚脳幹1の台形体(VNTB)の腹側核に拡散的に位置する。我々のグループは、TdTomatoレポーターマウスラインと交差するChAT-IRES-Creマウスラインを利用して、エピ蛍光照明下の脳幹スライス中のMOCニューロンを標的にしました。MOCニューロンは、立ち上がる台形体のイプシラテラ内側核(MNTB)から、逆側内頭核(CN)34、35、36、37、38の球状ふさふさ細胞(GBC)からの軸索によって、アッフェレント阻害性入力を受け取っていることを示した。さらに、MOCニューロンは、反側CN39、40、41のT-ステラート細胞から興奮性入力を受け取る可能性が高い。これらの研究は、MOCニューロンが同じ(対側)耳に由来する興奮性および阻害性入力の両方を受け取る。しかし、シナプス前ニューロンとMOCニューロンに収束する軸索は、典型的なコロナスライス調製物で完全に無傷であるほど互いに近くはない。MOCニューロンへのシナプス入力の統合が、新たに説明された阻害に焦点を当てて、その作用電位の発火パターンにどのような影響を与えるかを調べるため、可能な限り生理学的に現実的な方法で、インビトロ脳スライス実験の技術的利点を持つ、片耳からMOCニューロンに多様な異なるアファレントを刺激できる製剤を開発しました。
ウェッジスライスは、MOCニューロンの回路統合の調査のために設計された修正された厚いスライス調製物です(図1Aでスキーマ化)。スライスの厚い側には、末端の神経とシナプスから脳幹に入ると、内神経(以下「聴神経根」と呼ばれる)の切断された軸索が含まれています。聴覚神経根は、神経伝達物質放出を誘発し、完全に無傷のCN42、43、44、45、46の細胞のシナプス活性化を誘発するように電気的に刺激することができる。この刺激形式には、回路解析にはいくつかの利点があります。まず、MOCニューロンに対して発泡性の入力を提供するT-stellateおよびGBC軸索を直接刺激するのではなく、ANを刺激して、CNに豊富な固有回路の活性化を可能にします。これらの回路は、MOCニューロン46、47、48、49、50、51を含む脳全体の目標にCNニューロンの出力を調節する。第二に、ANからMOCニューロンのCN上流を通るアッフェラプス回路の多シナプス活性化は、聴覚刺激中に生体内で起こるように、より自然な活性化タイミングと可塑性がこれらのシナプスで起こることを可能にする。第三に、AN活動を模倣するために刺激パターンを変えることができます。最後に、MOCニューロンに対する興奮性および阻害的なモノラル投影は、ウェッジスライス内でそのままであり、その統合はパッチクランプ電気生理学の精度を有するMOCニューロンで測定することができる。全体として、この活性化スキームは、典型的な脳スライス調製物と比較してMOCニューロンに、より無傷の回路を提供する。この脳幹のくさびのスライスはまた、横方優れたオリーブ、優れたオリバリー核および内側優れたオリーブ10、11、52、53、54、55、56を含むイプシララルMNTBから阻害的な入力を受ける他の聴覚領域を調査するために使用することができる。当社の具体的な準備を超えて、このスライス法は、長距離入力の接続性を維持し、さまざまな単一細胞分解能電気生理学またはイメージング技術のためのニューロンの視覚化を改善するという利点を持つ他のシステムを評価するために使用または変更することができます。
このプロトコルは、約15°傾けることができるビブラートの段階またはプラットフォームの使用を必要とします。ここでは、市販の2ピース磁気ステージを使用し、「ステージ」は凹型磁気「ステージベース」に配置された湾曲した底を持つ金属ディスクです。ステージをシフトしてスライス角度を調整できます。ステージベースの同心円は、再現的に角度を推定するために使用されます。ステージとステージベースは、磁気ステージベースも回転させることができるスライスチャンバーに配置されます。
ここで説明するスライス手順は、ウェッジスライスと呼ばれ、無傷のシナプス前神経回路を維持するために強力であるが、神経機能の分析のための脳スライス実験のアクセシビリティを有する。回路解析の準備の有用性を最大限に高めるためには、いくつかの初期ステップで細心の注意を払う必要があります。ウェッジの寸法は、シナプス前核とその軸索突起の両方が準備されたウェッジス?…
The authors have nothing to disclose.
この研究は、NIHの壁内研究プログラム、NIDCD、Z01 DC00091(CJCW)によって支援されました。
Experimental Preparations | |||
Agar, powder | Fisher Scientific | BP1423500 | 4% agar block used to stabilize brain tissue during vibratome sectioning |
AlexaFluor Hydrazide 488 | Invitrogen | A10436 | Fluorophore used in internal solution to confirm successful MOC neuron patch |
Analytical Balance | Geneses Scientific (Intramalls) | AV114 | Weighing chemicals |
Double edged razor blade | Ted Pella | 121-6 | Vibratome cutting blade |
Kynurenic acid (5g) | Sigma Aldrich | K3375-5G | Slicing ACSF additive used to reduce neuron activity during dissection and slicing in order to improve tissue health for patch clamping |
pH Meter | Fisher Scientific (Intramalls) | 13-620-451 | Solution pH tester |
Plastic petri dishes 100mm dia X 20mm | Fisher Scientific (Intramalls) | 12-556-002 | 4% Agar Prep |
Stirring Hotplate | Fisher Scientific (Intramalls) | 11-500-150 | Heating for 4% Agar preparation |
Dissection and Slicing | |||
Biocytin | Sigma Aldrich | B4261-250MG | Chemical used for axonal tracing (conjugated to Streptavidin 488) |
Dissecting Microscope | Amscope | SM-1BN | For precision dissection during brain removal |
Dumont #5 Forceps | Fine Science Tools | 11252-20 | Fine forceps dissection tool |
Economy tweezers #3 | WPI | 501976 | Forceps dissection tool |
Glass Petri Dish 150mm dia x 15mm H | Fisher Scientific (Intramalls) | 08-747E | Dissection dish |
Interface paper (203 X 254mm PCTE Membrane 10um) | Thomas Scientific | 1220823 | Slice incubation/biocytin application |
Leica VT1200S Vibratome | Leica | 1491200S001 | Vibratome for wedge slice sectioning |
Mayo scissors | Roboz | RS-6872 | Dissection tool |
Single-edged carbon steel blades | Fisher Scientific (Intramalls) | 12-640 | Razor blade for dissection |
Specimen disc, orienting | Leica | 14048142068 | Specialized vibratome stage for reproducible tilting |
Spoonula | FisherSci | 14-375-10 | Dissection tool |
Super Glue | Newegg | 15187 | Used for glueing tissue to vibratome stage |
Vannas Spring Scissors | Fine Science Tools | 91500-09 | Dissection tool |
Electrophysiology | |||
A1R Upright Confocal Microscope | Nikon Instruments | Electrophysiology and imaging microscope, can be any microscope compatible with electrophysiology | |
Electrode Borosilicate glass w/ Filament OD 1.5mm, ID 1.1mm, 10 cm long | Sutter Instrument | BF150-110-10 | Patch clamping pipette glass |
Electrode Filler MicroFil | WPI | CMF20G | Patch electrode pipette filler |
In-line solution heater | Warner Instruments (GSAdvantage) | SH-27B | Slice perfusion system heater |
Multi-Micromanipulator Systems | Sutter Intruments | MPC-200 with MP285 | Micromanipulators for patch clamp and stimulation electrode placement |
P-1000 horizontal pipette puller for glass micropipettes | Sutter instruments | FG-P1000 | Patch clamp pipetter puller |
Patch-clamp amplifier and Software | HEKA | EPC-10 / Patchmaster Next | Can be any amplifier/software |
Recording Chamber | Warner Instruments | RC26G | Slice "bath" during recording |
Recording Chamber Harp | Warner Instruments | 640253 | Stablizes slice during electrophysiology recording |
Slice Incubation Chamber | Custom Build | Heated, oxygenated holding chamber for slices during recovery after slicing | |
Stimulus isolation unit | A.M.P.I. | Iso-Flex | Stimulus isolation unit for electrophysiology |
Syringe 60CC | Fischer Scientific (Intramalls) | 14-820-11 | Electrophysiology perfusion fluid handling |
Temperature controller | Warner Instruments (GSAdvantage) | TC-324C | Slice perfusion system temperature controller |
Tubing 1/8 OD 1/16 ID | Fischer Scientific (Intramalls) | 14-171-129 | Electrophysiology perfusion fluid handling |
Tugsten concentric bipolar microelectrode | WPI | TM33CCINS | Stimulating electrode for electrophysiology |
Histology | |||
24 well Plate | Fisher Scientific (Intramalls) | 12-556006 | Histology slice collection and immunostaining |
Alexa Fluor 488 Streptavidin | Jackson Immuno labs | 016-540-084 | Secondary antibody for biocytin visualization |
Corning Orbital Shaker | Sigma | CLS6780FP | Shaker for immunohistochemistry agitation |
Cresyl Violet Acetate | Sigma Aldrich (Intramalls) | C5042-10G | Cellular stain for histology |
Disposable Microtome Blades | Fisher Scientific | 22-210-052 | Sliding microtome blade |
Filter-syringe Nalgene 4mm Cellulose Acetate 0.2um | Fisher Scientific (Intramalls) | 09-740-34A | Syringe filter for filling recording pipettes with internal solution |
Fluoromount-G Slide Mounting Medium | Fisher Scientific | OB100-01 | Immunohistochemistry fluorescence mounting medium |
glass slide staining dish with rack | Fisher Scientific (Intramalls) | 08-812 | Cresyl Violet staining chamber |
Microm HM450 Sliding Microtome | ThermoFisher | 910020 | Freezing microtome for histology |
Microscope Cover Glasses: Rectangles 50mm X 24mm | Fisher Scientific (Intramalls) | 12-543D | Histochemistry slide cover glass |
Permount mounting medium | Fisher Scientific | SP15-100 | Cresyl violet section mounting medium |
Superfrost Slides | Fisher Scientific | 22-034980 | Histology slides |