L’imaging microendoscopico in vivo del calcio è uno strumento inestimabile che consente il monitoraggio in tempo reale delle attività neuronali negli animali che si comportano liberamente. Tuttavia, l’applicazione di questa tecnica all’amigdala è stata difficile. Questo protocollo mira a fornire una linea guida utile per indirizzare con successo le cellule di amigdala con un microscopio miniaturizzato nei topi.
Il monitoraggio in tempo reale in vivo delle attività neuronali negli animali che si muovono liberamente è uno degli approcci chiave per collegare l’attività neuronale al comportamento. A tal fine, è stata sviluppata e applicata con successo a molte strutture cerebrali1,2,3,4,5,6una tecnica di imaging in vivo che rileva i transitori di calcio nei neuroni utilizzando indicatori di calcio geneticamente codificati (GECI), un microscopio a fluorescenza miniaturizzata e una lente indice di rifrazione gradiente (GRIN). Questa tecnica di imaging è particolarmente potente perché consente l’imaging simultaneo cronico di popolazioni cellulari geneticamente definite per un periodo di lungo periodo fino a diverse settimane. Sebbene utile, questa tecnica di imaging non è stata facilmente applicata alle strutture cerebrali che si trovano in profondità nel cervello come l’amigdala, una struttura cerebrale essenziale per l’elaborazione emotiva e la memoria della pauraassociativa 7. Ci sono diversi fattori che rendono difficile l’applicazione della tecnica di imaging all’amigdala. Ad esempio, gli artefatti del movimento di solito si verificano più frequentemente durante l’imaging condotto nelle regioni cerebrali più profonde perché un microscopio a testa impiantato in profondità nel cervello è relativamente instabile. Un altro problema è che il ventricolo laterale è posizionato vicino alla lente GRIN impiantata e il suo movimento durante la respirazione può causare artefatti di movimento altamente irregolari che non possono essere facilmente corretti, il che rende difficile formare una vista di imaging stabile. Inoltre, poiché le cellule nell’amigdala sono solitamente silenziose in uno stato di riposo o anestetizzato, è difficile trovare e mettere a fuoco le cellule bersaglio che esprimono GECI nell’amigdala durante la procedura di base per l’imaging successivo. Questo protocollo fornisce una linea guida utile su come indirizzare in modo efficiente le cellule che esprimono GECI nell’amigdala con microscopio miniaturizzato a testa per un’imaging di calcio in vivo di successo in una regione cerebrale così profonda. Si noti che questo protocollo si basa su un particolare sistema (ad esempio, Inscopix) ma non limitato ad esso.
Il calcio è un secondo messaggero onnipresente, che gioca un ruolo cruciale in quasi tutte le funzioni cellulari8. Nei neuroni, il potenziale d’azione di cottura e l’input sinaptico causano un rapido cambiamento del libero intracellulare [Ca2+]9,10. Pertanto, tracciare i transitori di calcio offre l’opportunità di monitorare l’attività neuronale. I GECI sono potenti strumenti che consentono il monitoraggio [Ca2+] in popolazioni cellulari definite e compartimenti intracellulari11,12. Tra molti tipi diversi di indicatore di calcio a base proteica, GCaMP, una sonda Ca2+ basata su una singola molecola GFP13, è il GECI più ottimizzato e quindi ampiamente utilizzato. Attraverso più cicli di ingegneria, è stato sviluppato un certo numero di varianti di GCaMP12,14,15,16. Usiamo uno dei GCAMP sviluppati di recente, GCaMP7b, in questo protocollo16. I sensori GCaMP hanno notevolmente contribuito allo studio delle funzioni del circuito neurale in una serie di organismi modello come l’imaging dei transitori Ca2+ durante losviluppo 17,l’imaging in vivo in uno specifico strato corticale18,la misurazione della dinamica del circuito nell’apprendimento delle attività motorie19 e l’imaging dell’attività dell’insieme cellulare correlata alla memoria della paura associativa nell’ippocampo e nell’amigdala20,21.
L’imaging ottico dei GECI presenta diversivantaggi 22. La codifica genetica consente ai GECI di essere espressi stabilmente per un periodo di tempo a lungo termine in un sottoinsieme specifico di cellule definite dal profilo genetico o da modelli specifici di connettività anatomica. L’imaging ottico consente il monitoraggio cronico simultaneo in vivo di centinaia o migliaia di neuroni negli animali vivi. Sono stati sviluppati alcuni sistemi di imaging ottico per l’imaging in vivo e l’analisi di GECI all’interno del cervello di topi che si comportano liberamente con microscopi miniaturizzati a fluorescenzaa testa 21,23,24,25. Nonostante la tecnica di imaging ottico in vivo basata su GECI, lente GRIN e un microscopio in miniatura a testa sia un potente strumento per studiare il legame tra attività e comportamento del circuito neurale, l’applicazione di questa tecnologia all’amigdala è stata difficile a causa di diversi problemi tecnici legati al targeting dell’obiettivo GRIN alle cellule che esprimono GECI nell’amigdala senza causare artefatti di movimento che riducono gravemente la qualità dell’acquisizione di immagini e trovano cellule che esprimono GECI. Questo protocollo mira a fornire una linea guida utile per le procedure chirurgiche di attacco della piastra di base e impianto dell’obiettivo GRIN che sono passaggi critici per l’imaging ottico di calcio in vivo di successo nell’amigdala. Sebbene questo protocollo si rivolge all’amigdala, la maggior parte delle procedure descritte qui sono comunemente applicabili ad altre regioni cerebrali più profonde. Sebbene questo protocollo sia basato su un particolare sistema (ad esempio, Inscopix), lo stesso scopo può essere facilmente raggiunto con altri sistemi alternativi.
Le abili tecniche chirurgiche sono essenziali per ottenere un’imaging ottico di calcio in vivo di successo con microscopia miniaturica a testa in regioni cerebrali più profonde come l’amigdala come abbiamo descritto qui. Pertanto, sebbene questo protocollo fornisca una linea guida per processi chirurgici ottimizzati di attacco della piastra di base e impianto dell’obiettivo GRIN, potrebbero essere necessari ulteriori processi di ottimizzazione per i passaggi critici. Come accennato nella sezione del protocollo, le coord…
The authors have nothing to disclose.
Questo lavoro è stato supportato da sovvenzioni della Samsung Science and Technology Foundation (Project Number SSTF-BA1801-10).
26G needle | BD | 302002 | Surgery |
AAV1-Syn-GCaMP7b-WPRE | Addgene | 104493-AAV1 | Surgery |
AAV2/1-CaMKiiα-GFP | custom made | Surgery | |
Acrylic-Dental cement (Ortho-jet Acrylic Pink) | Lang | 1334-pink | Surgery & Baseplate Attachment |
Air flow manipulator | Neurotar | NTR000253-04 | Baseplate Attachment |
Amoxicillin | SIGMA | A8523-5G | Surgery |
Baseplate | INSCOPIX | 1050-002192 | Baseplate Attachment |
Baseplate cover | INSCOPIX | 1050-002193 | Baseplate Attachment |
Behavioral apparatus (chamber) | Coulbourn Instrument | Testcage | Behavior test |
Behavioral apparatus (software) | Coulbourn Instrument | Freeze Frame | Behavior test |
Carbon cage | Neurotar | 180mm x 70mm | Baseplate Attachment |
Carprofen | SIGMA | PHR1452-1G | Surgery |
Data processing software | INSCOPIX | INSCOPIX Data Processing Software | Baseplate Attachment & Behavior test |
Dexamethasone | SIGMA | D1756-500MG | Surgery |
Drill | Seyang | marathon-4 | Surgery |
Drill bur | ELA | US1/2, Shank104 | Surgery |
Glass needle | WPI | PG10165-4 | Surgery |
GRIN lens (INSCOPIX Proview Lens Probe) | INSCOPIX | 1050-002208 | Surgery |
Hamilton Syringe | Hamilton | 84875 | Surgery |
Head plate | Neurotar | Model 5 | Surgery |
Hex-key | INSCOPIX | 1050-004195 | Baseplate Attachment |
Laptop computer | Samsung | NT950XBV | Surgery & Baseplate Attachment |
Lens holder, Stereotaxic rod (INSCOPIX proview implant kit) | INSCOPIX | 1050-004223 | Surgery |
Microscope gripper | INSCOPIX | 1050-002199 | Baseplate Attachment |
Microscope, DAQ software, hardware | INSCOPIX | nVista 3.0 | Baseplate Attachment & Behavior test |
Mobile homecage | Neurotar | MHC V5 | Baseplate Attachment |
Moterized arm | Neurostar | Customized | Surgery |
Moterized arm software | Neurostar | Customized | Surgery |
NI board | National instrument | Behavior test | |
Removable epoxy bond | WPI | Kwik-Cast | Surgery |
Resin cement (Super-bond) | Sun medical | Super bond C&B | Surgery |
Skull screw | Stoelting | 51457 | Surgery |
Stereotaxic electrode holder | ASI | EH-600 | Surgery |
Stereotaxic frame | Stoelting | 51600 | Surgery |
Stereotaxic manipulator | Stoelting | 51600 | Baseplate Attachment |