Este protocolo foi projetado para auxiliar os médicos a medir a oxigenação do tecido regional em diferentes locais do corpo em bebês e crianças. Pode ser usado em situações em que a oxigenação tecidual é potencialmente comprometida, particularmente durante o bypass cardiopulmonar, ao usar dispositivos de assistência cardíaca não pulsantes, e em recém-nascidos, bebês e crianças em estado crítico.
A espectroscopia infravermelha próxima (NIRS) calcula a oxigenação do tecido regional (rSO2) usando os diferentes espectros de absorção de moléculas de hemoglobina oxigenada e desoxigenada. Uma sonda colocada na pele emite luz que é absorvida, dispersa e refletida pelo tecido subjacente. Os detectores da sonda sentem a quantidade de luz refletida: isso reflete a razão específica do órgão de fornecimento e consumo de oxigênio – independente do fluxo pulsante. Dispositivos modernos permitem o monitoramento simultâneo em diferentes locais do corpo. Um aumento ou queda na curva rSO2 visualiza mudanças na oferta ou demanda de oxigênio antes que sinais vitais os indiquem. A evolução dos valores rSO2 em relação ao ponto de partida é mais importante para a interpretação do que os valores absolutos.
Uma aplicação clínica de rotina do NIRS é a vigilância da oxigenação somática e cerebral durante e após a cirurgia cardíaca. Também é administrado em bebês prematuros em risco de enterocolite necrosante, recém-nascidos com encefalopatia isquêmica hipóxica e risco potencial de oxigenação tecidual prejudicada. No futuro, o NIRS pode ser cada vez mais usado em neuromonitoramento multimodal, ou aplicado para monitorar pacientes com outras condições (por exemplo, após ressuscitação ou lesão cerebral traumática).
A espectroscopia infravermelha próxima (NIRS) mede no invasivamente a saturação de oxigênio do tecido regional (rSO2) no cérebro, músculo, rins, fígado ouintestinos 1,2,3,4,5,6,7,8,9. É aplicado em terapia intensiva e cirurgia cardíaca para monitorar o consumo de oxigênio “em tempo real” e a saturação de tecido somático10.
Uma sonda na pele emite luz quase infravermelha (700 – 1000 nm)11 que penetra tecido e osso até uma profundidade de aproximadamente 1-3 cm, sendo assim dispersa, absorvida e refletida12. Os detectores da sonda sentem a quantidade de luz refletida – representando a quantidade relativa de hemoglobina desoxigenada – e calculam um valor numérico que indica a saturação de oxigenação regional em porcentagem (%)2. Ao contrário da oximetria de pulso (que reflete o fornecimento sistêmico de oxigênio e requer fluxo pulsante), o NIRS reflete a saturação venosa de oxigênio e não requer fluxo pulsante, tornando-o adequado para situações de baixo fluxo, como o bypass cardiopulmonar7.
O rSO2 reflete o equilíbrio entre a oferta de oxigênio e o consumo no tecido – as alterações em ambos se tornam visíveis mesmo antes das alterações se tornarem clinicamente evidentes. As mudanças relativas à linha de base são mais importantes do que os próprios valores medidosabsolutos 10,13,14,15,16. A medição do RSO2 ajuda os médicos a monitorar os pacientes durante a cirurgia cardíaca, o bypass cardiopulmonar e na unidade de terapia intensiva; também pode auxiliar na orientação da oxigenoterapia em bebês prematuros e monitorar a perfusão renal, splancânica e sistêmica12,17,18,19,20,21.
O NIRS é uma maneira segura, viávelesimples de monitorar a oxigenação tecidual continuamente. Combinado com outros biomarcadores cerebrais e técnicas de neuromonitoramento (por exemplo, EEG contínuo ou integrado à amplitude), o NIRS provavelmente desempenhará um papel no monitoramento futuro (multimodal) em recém-nascidos e criançasde 23,24. Neste artigo, mostramos aos médicos como configurar o monitoramento do NIRS para diferentes sistemas de órgãos, explicar como os valores do RSO2 evoluem correspondentes às mudanças na fisiologia e apresentamos resultados típicos de diferentes ambientes clínicos.
Este artigo ilustra como o NIRS cerebral e somático é criado em bebês e crianças. O NIRS cerebral é usado para fins de monitoramento durante procedimentos como fechamento de ductus arteriosus de patente, administração de surfactantes, cirurgia cardíaca e bypass cardiopulmonar; também é utilizado para monitorar pacientes gravemente doentes na UTI, prever enterocolite necrosante em bebês prematuros, e prever desfecho após encefalopatia isquêmica hipoxica2,5,6,33,34,35,36,37,38,39,40. Além disso, o NIRS pode auxiliar na orientação da oxigenoterapia em bebês prematuros17,18,19. O NIRS somático ajuda a monitorar a perfusão renal, splancânica e sistêmica12,20,21 e também pode ser valioso para detectar complicações durante ou após o transplante hepático8,41,42. O uso simultâneo de múltiplas sondas (NIRS multisite) facilita a detecção de hipoperfusão sistêmica23,43.
Para que a medição NIRS funcione com precisão, selecionar a sonda e a posição apropriadas é crucial. A pele vulnerável pode exigir o uso de sondas não adesivas (por exemplo, deixando a tampa ou anexando uma camada de celofane ao lado pegajoso). No entanto, toda a sonda deve estar em contato firme com a pele; caso contrário, os sensores não fornecerão valores confiáveis(Figura 4 e Figura 8). Um ambiente brilhante causa falso ambiente alto e escuro falsos valores baixos se a sonda não estiver firmemente ligada à pele. Em caso de má qualidade de gravação (indicada pelo dispositivo) ou valores implausíveis, a solução de problemas começa verificando se as etapas essenciais acima mencionadas foram realizadas. Se o problema persistir, a sonda e o pré-amplificador devem ser substituídos e todos os contatos de plugue elétrico verificados. Fontes de luz externas que atuam no sensor também podem acionar valores incorretos; cobrir as sondas com uma tampa leve impermeável irá remediar isso. Se os valores anormais do NIRS persistirem, o paciente deve ser examinado para descartar complicações. Os seguintes parâmetros devem ser avaliados e otimizados: pressão arterial, oxigenação sistêmica, pH, hemoglobina, retorno do oxigênio cerebral (quando o paciente está em bypass cardiopulmonar)44.
Para modificar o uso padrão, não há limite para as possíveis aplicações. É possível colocar uma sonda NIRS em qualquer local de interesse, desde que a pele esteja intacta. A derivação de valores simultaneamente de vários locais permite uma grande variedade de configurações de acordo com cada questão clínica ou científica específica. Por exemplo, NIRS e NIRS multisite podem ser usados fora do cuidado crítico e até mesmo durante o exercício12.
Apesar de sua facilidade de aplicação e uso, a medição do RSO2 tem algumas limitações que devem ser consideradas ao interpretar valores e curvas. Os valores medidos dependem do dispositivo e dos sensores utilizados32. Os valores absolutos devem, portanto, ser interpretados com cautela – os valores de referência não podem ser transferidos facilmente entre dispositivos e configurações32. rSO2 valores para órgãos que não sejam o cérebro variam muito entre os indivíduos30. Mas mesmo dentro de uma gravação, os valores podem flutuar em até 6% se uma sonda se descolar e for então recolocado45. Além disso, os valores do NIRS dependem do estado metabólico do indivíduo, que é alterado por intervenções como hipotermia terapêutica e medicação24.
Alterações nas condições de limite tecidual – por exemplo, a entrada de sangue ou ar devido à cirurgia – também produzem valores incorretos de NIRS46. Nos primeiros dias de vida dos prematuros, a transição do mecônio para as fezes regulares altera o espectro de absorção fecal e pode afetar o rSO intestinal medido2 valores47. Colocar uma sonda NIRS sobre tecido diferente do local pretendido produz imprecisões em valores absolutos, mas ainda pode ser útil para monitorar tendências7.
Apesar de suas limitações, o NIRS é um bom meio de monitorar de forma não invasiva e contínua a oxigenação de uma região específica em tempo real. Métodos alternativos para avaliar a perfusão global do tecido são invasivos e descontínuos: extrato de sangue arterial, concentração de lactato sérico, saturação venosa central ou saturação de oxigênio da lâmpada jugular. Estes podem ser particularmente problemáticos em bebês prematuros, que frequentemente desenvolvem anemia iatrogênica devido a repetidas coletas de sangue e cujo rSO2 cerebral é prejudicado durante o desenho de sangue arterial48. Em casos de baixa saída cardíaca, durante a oxigenação da membrana extracorpórea ou quando dispositivos de assistência cardíaca não pulsantes estão em uso, o NIRS ainda funciona – em contraste com a oximetria do pulso – pois não requer fluxo pulsal e pode até monitorar seletivamente áreas com risco de hipóxia7,49. rSO2 alterações nessas regiões podem servir como sinais iniciais de redução da produção cardíaca7. Por essas características, o NIRS fornece informações clínicas essenciais que atualmente não podem ser obtidas a partir de outras medidas de saturação tecidual.
O escopo de aplicação do monitoramento do RSO2 na UTI neonatal e pediátrica tende a se expandir no futuro. Uma possível aplicação é o monitoramento da hemodinâmica cerebral após lesão cerebral traumática, que já está sendo investigada em adultos50,51,52,53,54,55. Em bebês prematuros, a suplementação de oxigênio direcionada a metas pode levar a melhores desfechos neurodesenvolvimentos, reduzindo a hipoxemia cerebral17,18,19. A combinação de NIRS cerebrais com outros biomarcadores cerebrais também pode ser promissora. Por exemplo, a combinação de EEG e NIRS integrados à amplitude pode ajudar a determinar o prognóstico em encefalopatia isquêmica hipoxica moderada56. Possíveis aplicações adicionais para esta combinação incluem hemodinâmica comprometida ou convulsões23.
Em resumo, o NIRS é uma tecnologia promissora com potencial para uma aplicação ainda mais ampla. Corretamente aplicadas e interpretadas, as medidas rSO2 ajudam a detectar complicações ou condições clínicas deterioradas em um estágio inicial e orientar a terapia em vários ambientes clínicos. Este protocolo fornece aos médicos as ferramentas para configurar e interpretar as medidas do RSO2 em diferentes locais do corpo, e para interpretar esses resultados.
The authors have nothing to disclose.
Agradecemos a Carole Cürten pela edição de idiomas. Nenhum financiamento foi recebido para este vídeo. A NB recebeu uma bolsa de pesquisa interna (IFORES) da faculdade de medicina da Universidade de Duisburg-Essen.
cotton swab | for skin cleaning | ||
INVOS (Adult Regional Saturation Sensor) | Covidien/Medtronic | SAFB-SM | The adult regional saturation sensor Model SAFB_SM has been designed for cerebral-somatic monitoring of site-specific regional oxygen saturation (rSO2) in adult patients > 40 kg. |
INVOS (Pediatric Regional Saturation Sensor) | Covidien/Medtronic | SPFB | The pediatric regional saturation sensor Model SPFB has been designed for cerebral-somatic monitoring of site-specific regional oxygen saturation (rSO2) in pediatric patients < 40 kg. |
INVOS (preamplifier with Cable) | Covidien/Medtronic | 5100C- PA (Ch 1&2) | Amplifier connects NIRS sensors (Canal 1&2) to monitor 5100C. |
INVOS (preamplifier with Cable) | Covidien/Medtronic | 5100C- PB (Ch 3&4) | Amplifier connects NIRS sensors (Canal 3&4) to monitor 5100C. |
INVOS (Reusable Sensor Cable) | Covidien/Medtronic | RSC-1 – RSC-4 | The Reusable Sensor Cables are intended for multiple use. For use with SomaSensor SAFB-SM and SPFB. |
INVOS 5100C Monitor (Cerebral/Somatic Oximeter) | Covidien/Medtronic | 5100C | Monitor for displaying and recording NIRS data. |
INVOS Analytics Tool | Covidien/Medtronic | Version 1.2 | Evaluation and display of "Real Time" and Case History data. |
OxyAlert NIRSensor (Cerebral/somatic -Neonatal) | Covidien/Medtronic | CNN/SNN | OxyAlert NIRSensors disposable sensor has a small adhesive pad with a gentle hydrocolloid adhesive for use with peadiatric, infant an neonatal patientes. Suitable for patients <5kg. |
USB Flash Drive | Covidien/Medtronic | 5100C-USB | Collects and transfers Date to INVOS Analytics Tool |