Summary

静脉畸形的患者衍生异种移植模型

Published: June 15, 2020
doi:

Summary

我们提出了一个详细的协议,以生成静脉畸形的杂音异种模型。该模型基于患者衍生的内皮细胞的皮下注射,这些内皮细胞含有超激活的 TIE2 和/或 PIK3CA 基因突变。异种移植病变密切回顾VM患者组织组织组织病理学特征。

Abstract

静脉畸形 (VM) 是一种血管异常,由静脉网络发育受损而引起,导致静脉扩张且经常功能失调。本文的目的是仔细描述一个模拟人类VM并且能够反映患者异质性的Murine异种移植模型的建立。在内皮细胞(EC)中超活化非遗传(体细胞 )TEK(TIE2)PIK3CA 突变被确定为VM中病理血管增大的主要驱动因素。以下协议描述了患者衍生的EC表达突变 TIE2 和/或 PIK3CA 的隔离、纯化和扩展。这些EC被注射到免疫缺陷的脑膜小鼠的背部,以产生分血管通道。TIE2 或 PIK3CA 突变 EC 产生的病变在注射后 7~u20129 天内明显血管化,并重述 VM 患者组织组织组织组织病理学特征。此 VM 异种移植模型为研究驱动 VM 形成和扩展的细胞和分子机制提供了一个可靠的平台。此外,该模型将有助于转化研究,测试新药候选药物在防止人类VM中异常血管增大的疗效。

Introduction

血管发育中的缺陷是许多疾病的根本原因,包括静脉畸形(VM)。VM是一种先天性疾病,其特征是血管异常形态和扩张。关于VM组织和内皮细胞(EC)的重要研究已经确定了两个基因的功能增益突变:TEK,编码酪氨酸激酶受体TYE2,和PIK3CA,编码PI3-激酶(PI3K)的p110+(催化亚基)等构形式2,32,3,4,5。,4,5这些体细胞突变导致关键血管生成/生长信号通路(包括PI3K/AKT)的配体独立超活化,从而导致扩张的肠黄静脉3。尽管这些重要的基因发现,随后的细胞和分子机制触发异常血管生成和扩大血管通道的形成仍然没有完全了解。

在正常和病理血管生成期间,新血管从预先存在的血管网络发芽,EC经历一系列重要的细胞过程,包括增殖、迁移、细胞外基质(ECM)重塑和流明形成6。EC 的二维和三维 (2D/3D) 体外培养物是单独研究每个细胞特性的重要工具。然而,显然需要用鼠标模型在宿主微环境内重述病理血管的扩大,同时为转化研究的目标药物提供有效的临床前评估平台。

到目前为止,尚未报告与 TIE2 功能增益突变相关的 VM 转基因喃生基因模型。目前的转基因VM小鼠模型依赖于激活突变PIK3CA p.H1047R3,5的无所不在或组织受限的表达。这些转基因动物提供了对这个热点PIK3CA突变的全身或组织特异性效应的显著洞察。这些模型的局限性是形成高度病理的血管网络,导致早期杀伤力。因此,这些小鼠模型不能充分反映突变事件的零星发生和VM病理学的局部性质。

相反,患者衍生的异种移植模型是基于移植或注射病理组织或细胞从患者衍生到免疫缺陷小鼠7。Xenograft模型是一个强大的工具,以扩大有关疾病开发和发现新的治疗剂8的知识。此外,使用患者衍生细胞允许科学家重新综述突变异质性,以研究患者表型的光谱。

在这里,我们描述了一个协议,其中患者衍生的VM EC,表示一个突变的组成活性形式的 TIE2 和/或PIK3CA被注射皮下在脂肪裸鼠的背部。注射的血管细胞悬浮在ECM框架中,以促进血管生成,如以前的血管异种移植模型9,10,1110,所述9这些VM EC经历显著形态生成,在没有支撑细胞的情况下产生扩大的、充满的病理血管。VM 的异种移植模型为靶向药物的临床前评估提供了一个有效的平台,用于抑制不受控制的流明扩张的能力。

Protocol

患者组织样本是在辛辛那提儿童医院医疗中心(CCHMC)、癌症和血液疾病研究所根据机构政策经批准的机构审查委员会(IRB)获得组织样本和肿瘤和血管异常患者组织样本和数据收集和储存的知情同意后,经临床调查委员会批准的。以下所述的所有动物程序都经过 CCHMC 机构动物护理和使用委员会的审查和批准。 1. 材料和库存解决方案的准备 完整内皮细胞生长介质的准…

Representative Results

该协议描述了基于皮肤注射患者衍生的EC到免疫缺陷裸鼠背部的VM的murine异种移植模型的过程。内皮细胞菌落可以在从VM组织或病变血中分离后4周内收获(图1A,B)。注射后的第二天,异种移植病变塞覆盖面积约80\u2012100 mm2。在我们的手中,带 TIE2/PIK3CA 突变EC的病变塞在注射14、15(图1C-E)后7~u20129天内明显15血…

Discussion

在这里,我们描述了一种生成患者派生的 VM 异种移植模型的方法。这个 Murine 模型提供了一个优秀的系统,使研究人员能够更深入地了解病理流明的增大,并将有助于开发更有效和有针对性的治疗 VM。这可以很容易地适应调查其他类型的血管异常,如毛细血管淋巴静脉畸形16。有几个步骤对于成功生成可重复的血管病变至关重要。首先,患者衍生的内皮细胞必须是纯的(没有其?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

作者要感谢诺拉湖校对。本手稿中报告的研究得到了国家心脏、肺和血液研究所的支持,该学会获得国家健康研究院的一部分,其奖项编号为 R01 HL117952(E.B.)。内容完全由作者负责,不一定代表国家卫生研究院的官方观点。

Materials

Athymic nude mice, (Foxn1-nu); 5-6 weeks, males Envigo 069(nu)/070(nu/+) Subcutaneous injection
Biotinylated Ulex europeaus Agglutinin-I (UEA-I) Vector Laboratories B-1065 Histological anlaysis
Bottle top filter (500 ml; 0.2 µM) Thermo Fisher 974106 Cell culture
Bovine Serum Albumin (BSA) BSA A7906-50MG Cell culture; Histological analysis
Calcium cloride dihydrate (CaCl2.2H2O) Sigma C7902-500G Cell culture
Caliper Electron Microscopy Sciences 50996491 Lesion plug measurment
CD31-conjugated magnetic beads (Dynabeads) Life Technologies 11155D EC separation
Cell strainer (100 μM) Greiner 542000 Cell culture
Collagenase A Roche 10103578001 Cell culture
Conical Tube; polypropylene (15 mL) Greiner 07 000 241 Cell culture
Conical Tube; polypropylene (50 mL) Greiner 07 000 239 Cell culture
Coplin staining jar Ted Pella 21029 Histological anlaysis
Coverglass (50 X 22 mm) Fisher Scientific 12545E Histological anlaysis
DAB: 3,3'Diaminobenzidine Reagent (ImmPACT DAB) Vector Laboratories SK-4105 Histological anlaysis
Dulbecco's Modification of Eagle's Medium (DMEM) Corning 10-027-CV Cell culture
DynaMag-2 Life Technologies 12321D EC separation
Ear punch VWR 10806-286 Subcutaneous injection
EDTA (0.5M, pH 8.0) Life Technologies 15575-020 Histological anlaysis
Endothelial Cell Growth Medium-2 (EGM2) Bulletkit (basal medium and supplements) Lonza CC-3162 Cell culture
Eosin Y (alcohol-based) Thermo Scientific 71211 Histological anlaysis
Ethanol Decon Labs 2716 Histological anlaysis
Fetal Bovine Serum (FBS) , HyClone GE Healthcare SH30910.03 Cell culture
Filter tip 1,250 μL MidSci AV1250-H Multiple steps
Filter tip 20 μL VWR 10017-064 Multiple steps
Filter tip 200 μL VWR 10017-068 Multiple steps
Formalin buffered solution (10%) Sigma F04586 Lesion plug dissection
Hemacytometer (INCYTO; Disposable) SKC FILMS DHCN015 Cell culture
Hematoxylin Vector Hematoxylin H-3401 Histological anlaysis
Human plasma fibronectin purified protein (1mg/mL) Sigma FC010-10MG Cell culture
Hydrogen Peroxide solution (30% w/w) Sigma H1009 Histological anlaysis
ImageJ Software Analysis
Isoflurane, USP Akorn Animal Health 59399-106-01 Subcutaneous injection
magnesium sulfate heptahydrate (MgSO4.7H2O) Sigma M1880-500G Cell culture
Basement Membrane Matrix (Phenol Red-Free; LDEV-free) Corning 356237 Subcutaneous injection
Microcentrifuge tube (1.5 mL) VWR 87003-294 EC separation
Microscope Slide Superfrost (75mm X 25mm) Fisher Scientific 1255015-CS Histological anlaysis
Needles, 26G x 5/8 inch Sub-Q sterile needles Becton Dickinson (BD) BD305115 Subcutaneous injection
Normal horse serum Vector Laboratories S-2000 Histological anlaysis
Penicillin-Streptomycin-L-Glutamine (100X) Corning 30-009-CI Cell culture
Permanent mounting medium (VectaMount) Vector Laboratories H-5000 Histological anlaysis
Pestle Size C, Plain Thomas Scientific 3431F55 EC isolation
Phosphate Buffered Saline (PBS) Fisher Scientific BP3994 Cell culture
Scale VWR 65500-202 Subcutaneous injection
Serological pipettes (10 ml) VWR 89130-898 Cell culture
Serological pipettes (5ml) VWR 89130-896 Cell culture
Sodium carbonate (Na2CO3) Sigma 223530 Cell culture
Streptavidin, Horseradish Peroxidase, Concentrate, for IHC Vector Laboratories SA-5004 Cell culture
Syringe (60ml) BD Biosciences 309653 Cel culture
SYRINGE FILTER (0.2 µM) Corning 431219 Cell culture
Syringes (1 mL with Luer Lock) Becton Dickinson (BD) BD-309628 Subcutaneous injection
Tissue culture-treated plate (100 X 20 mm) Greiner 664160 Cell culture
Tissue culture-treated plate (145X20 mm) Greiner 639160 Cell culture
Tissue culture-treated plates (60 X 15) mm Eppendorf 30701119 Cell culture
Tris-base (Trizma base) Sigma T6066 Histological anlaysis
Trypan Blue Solution (0.4 %) Life Technologies 15250061 Cell culture
Trypsin EDTA, 1X (0.05% Trypsin/0.53mM EDTA) Corning 25-052-Cl Cell culture
Tween-20 Biorad 170-6531 Histological anlaysis
Wheaton bottle VWR 16159-798 Cell culture
Xylenes Fisher Scientific X3P-1GAL Histological anlaysis

References

  1. Dompmartin, A., Vikkula, M., Boon, L. M. Venous malformation: update on aetiopathogenesis, diagnosis and management. Phlebology: The Journal of Venous Disease. 25 (5), 224-235 (2010).
  2. Limaye, N., et al. Somatic mutations in angiopoietin receptor gene TEK cause solitary and multiple sporadic venous malformations. Nature Genetics. 41 (1), 118-124 (2009).
  3. Castel, P., et al. Somatic PIK3CA mutations as a driver of sporadic venous malformations. Science Translational Medicine. 8 (332), 42 (2016).
  4. Limaye, N., et al. Somatic Activating PIK3CA Mutations Cause Venous Malformation. The American Journal of Human Genetics. 97 (6), 914-921 (2015).
  5. Castillo, S. D., et al. Somatic activating mutations in Pik3ca cause sporadic venous malformations in mice and humans. Science Translational Medicine. 8 (332), 43 (2016).
  6. Stratman, A. N., et al. Endothelial cell lumen and vascular guidance tunnel formation requires MT1-MMP-dependent proteolysis in 3-dimensional collagen matrices. Blood. 114 (2), 237-247 (2009).
  7. Okada, S., Vaeteewoottacharn, K., Kariya, R. Application of Highly Immunocompromised Mice for the Establishment of Patient-Derived Xenograft (PDX) Models. Cells. 8 (8), 889 (2019).
  8. Byrne, A. T., et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nature Reviews Cancer. 17 (4), 254-268 (2017).
  9. Allen, P., Melero-Martin, J., Bischoff, J. Type I collagen, fibrin and PuraMatrix matrices provide permissive environments for human endothelial and mesenchymal progenitor cells to form neovascular networks. Journal of Tissue Engineering and Regenerative Medicine. 5 (4), 74 (2011).
  10. Allen, P., Kang, K. T., Bischoff, J. Rapid onset of perfused blood vessels after implantation of ECFCs and MPCs in collagen, PuraMatrix and fibrin provisional matrices. Journal of Tissue Engineering and Regenerative. 9 (5), 632-636 (2015).
  11. Nowak-Sliwinska, P., et al. Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis. 21 (3), 425 (2018).
  12. Roh, Y. N., et al. The results of surgical treatment for patients with venous malformations. Annals of Vascular Surgery. 26 (5), 665-673 (2012).
  13. Marler, J. J., Mulliken, J. B. Current management of hemangiomas and vascular malformations. Clinics in Plastic Surgery. 32 (1), 99-116 (2005).
  14. Goines, J., et al. A xenograft model for venous malformation. Angiogenesis. 21 (4), 725-735 (2018).
  15. Li, X., et al. Ponatinib Combined With Rapamycin Causes Regression of Murine Venous Malformation. Arteriosclerosis, thrombosis, and vascular biology. 39 (3), 496-512 (2019).
  16. Le Cras, T. D., et al. Constitutively active PIK3CA mutations are expressed by lymphatic and vascular endothelial cells in capillary lymphatic venous malformation. Angiogenesis. , 1-18 (2020).
  17. Boscolo, E., et al. Rapamycin improves TIE2-mutated venous malformation in murine model and human subjects. Journal of Clinical Investigation. 125 (9), 3491-3504 (2015).

Play Video

Citer Cet Article
Schrenk, S., Goines, J., Boscolo, E. A Patient-Derived Xenograft Model for Venous Malformation. J. Vis. Exp. (160), e61501, doi:10.3791/61501 (2020).

View Video