Summary

Couplage de la capture du carbone d’une centrale électrique avec des étangs ouverts semi-automatisés pour la culture de microalgues

Published: August 14, 2020
doi:

Summary

Un protocole est décrit pour utiliser le dioxyde de carbone dans les gaz de combustion des centrales électriques au gaz naturel pour cultiver des microalgues dans des étangs ouverts. L’injection de gaz de combustion est contrôlée à l’aide d’un capteur de pH et la croissance des microalgues est surveillée avec des mesures en temps réel de la densité optique.

Abstract

Aux États-Unis, 35 % des émissions totales de dioxyde de carbone (CO2) proviennent de l’industrie de l’énergie électrique, dont 30 % représentent la production d’électricité au gaz naturel. Les microalgues peuvent biofixer le CO2 10 à 15 fois plus rapidement que les plantes et convertir la biomasse algale en produits d’intérêt, tels que les biocarburants. Ainsi, cette étude présente un protocole qui démontre les synergies potentielles de la culture de microalgues avec une centrale au gaz naturel située dans le sud-ouest des États-Unis dans un climat chaud semi-aride. Des technologies de pointe sont utilisées pour améliorer le captage et l’utilisation du carbone via l’espèce d’algue verte Chlorella sorokiniana, qui peut être transformée en biocarburant. Nous décrivons un protocole impliquant un étang de course ouvert semi-automatisé et discutons des résultats de ses performances lorsqu’il a été testé à la centrale électrique de Tucson, à Tucson, en Arizona. Les gaz de combustion ont été utilisés comme principale source de carbone pour contrôler le pH, et Chlorella sorokiniana a été cultivée. Un milieu optimisé a été utilisé pour cultiver les algues. La quantité de CO2 ajoutée au système en fonction du temps a été étroitement surveillée. En outre, d’autres facteurs physicochimiques affectant le taux de croissance des algues, la productivité de la biomasse et la fixation du carbone ont été surveillés, notamment la densité optique, l’oxygène dissous (OD), l’électroconductivité (EC) et les températures de l’air et des étangs. Les résultats indiquent qu’un rendement en microalgues allant jusqu’à 0,385 g/L de poids sec sans cendres est atteignable, avec une teneur en lipides de 24%. Tirer parti des possibilités de synergie entre les émetteurs de CO2 et les producteurs d’algues peut fournir les ressources nécessaires pour accroître le captage du carbone tout en soutenant la production durable de biocarburants et de bioproduits d’algues.

Introduction

Le réchauffement climatique est l’un des problèmes environnementaux les plus importants auxquels le monde est confronté aujourd’hui1. Des études suggèrent que la cause principale est l’augmentation des émissions de gaz à effet de serre (GES), principalement du CO2, dans l’atmosphère en raison des activités humaines 2,3,4,5,6,7. Aux États-Unis, la plus grande densité d’émissions de CO2 provient principalement de la combustion de combustibles fossiles dans le secteur de l’énergie, en particulier des centrales de production d’électricité 3,7,8,9. Ainsi, les technologies de captage et d’utilisation du carbone (CCU) sont devenues l’une des principales stratégies pour réduire les émissions de GES 2,7,10. Il s’agit notamment de systèmes biologiques qui utilisent la lumière du soleil pour convertir le CO2 et l’eau via la photosynthèse, en présence de nutriments, en biomasse. L’utilisation de microalgues a été proposée en raison du taux de croissance rapide, de la capacité élevée de fixation du CO2 et de la capacité de production élevée. De plus, les microalgues ont un large potentiel de bioénergie parce que la biomasse peut être convertie en produits d’intérêt, tels que les biocarburants qui peuvent remplacer les combustibles fossiles 7,9,10,11,12.

Les microalgues peuvent se développer et réaliser une conversion biologique dans une variété de systèmes de culture ou de réacteurs, y compris les étangs de piste ouverts et les photobioréacteurs fermés 13,14,15,16,17,18,19. Les chercheurs ont étudié les avantages et les limites qui déterminent le succès du bioprocessus dans les deux systèmes de culture, dans des conditions intérieures ou extérieures 5,6,16,20,21,22,23,24,25 . Les étangs ouverts sont les systèmes de culture les plus courants pour le captage et l’utilisation du carbone dans les situations où les gaz de combustion peuvent être distribués directement à partir de la cheminée. Ce type de système de culture est relativement peu coûteux, facile à mettre à l’échelle, a de faibles coûts énergétiques et a de faibles besoins en énergie pour le mélange. De plus, ces systèmes peuvent facilement être colocalisés avec la centrale électrique pour rendre le processus CCU plus efficace. Cependant, certains inconvénients doivent être pris en compte, tels que la limitation du transfert de masse de gaz / liquide CO2. Bien qu’il y ait des limites, les étangs de piste ouverts ont été proposés comme le système le plus approprié pour la production extérieurede biocarburants à microalgues 5,9,11,16,20.

Dans cet article, nous détaillons une méthode de culture de microalgues dans des étangs ouverts qui combine la capture du carbone des gaz de combustion d’une centrale électrique au gaz naturel. La méthode consiste en un système semi-automatisé qui contrôle l’injection de gaz de combustion en fonction du pH de culture; le système surveille et enregistre l’état de la culture de Chlorella sorokiniana en temps réel à l’aide de capteurs de densité optique, d’oxygène dissous (OD), d’électroconductivité (EC) et de température de l’air et de l’étang. Les données sur la biomasse algale et l’injection de gaz de combustion sont collectées par un enregistreur de données toutes les 10 minutes à l’installation électrique de Tucson. Le maintien de la souche d’algues, la mise à l’échelle, les mesures de contrôle de la qualité et la caractérisation de la biomasse (par exemple, corrélation entre la densité optique, g / L et la teneur en lipides) sont effectués dans un laboratoire de l’Université de l’Arizona. Un protocole précédent décrivait une méthode d’optimisation des paramètres des gaz de combustion afin de favoriser la croissance des microalgues dans les photobioréacteurs par simulation informatique26. Le protocole présenté ici est unique en ce sens qu’il utilise des étangs ouverts et est conçu pour être mis en œuvre sur place dans une centrale au gaz naturel afin d’utiliser directement les gaz de combustion produits. De plus, les mesures de densité optique en temps réel font partie du protocole. Le système tel que décrit est optimisé pour un climat semi-aride chaud (Köppen BSh), qui présente de faibles précipitations, une variabilité significative des précipitations d’une année à l’autre, une faible humidité relative, des taux d’évaporation élevés, un ciel dégagé et un rayonnement solaire intense27.

Protocol

1. Système de croissance: réglages d’étang de piste de course ouvert en plein air Installez les bassins ouverts de l’hippodrome à proximité de la source de gaz de combustion (contenant 8 à 10 % de CO2). Assurez-vous que l’eau et l’électricité sont disponibles à l’emplacement du réacteur de l’étang et que le réacteur n’est pas à l’ombre la majeure partie de la journée (figure 1). Capter les gaz de combustion pendant le processus de …

Representative Results

Les résultats expérimentaux antérieurs de notre laboratoire indiquent que la culture de microalgues à l’aide d’un étang de course ouvert semi-automatisé peut être couplée à des processus de capture du carbone. Pour mieux comprendre la synergie entre ces deux processus (Figure 2), nous avons développé un protocole et l’avons adapté à la culture de l’espèce d’algue verte Chlorella sorokiniana dans des conditions extérieures dans un climat semi-aride chaud. Les…

Discussion

Dans cette étude, nous démontrons qu’il est possible de coupler de manière synergique le captage du carbone des gaz de combustion et la culture de microalgues dans un climat chaud semi-aride. Le protocole expérimental pour le système d’étang de piste semi-automatisé intègre une technologie de pointe pour surveiller en temps réel les paramètres pertinents qui sont en corrélation avec la croissance des algues lors de l’utilisation de gaz de combustion comme source de carbone. Le protocole proposé vise à …

Divulgations

The authors have nothing to disclose.

Acknowledgements

Ce travail a été soutenu par le projet de banc d’essai régional de matières premières algales, U.S. Department of Energy DE-EE0006269. Nous remercions également Esteban Jimenez, Jessica Peebles, Francisco Acedo, Jose Cisneros, RAFT Team, Mark Mansfield, le personnel de la centrale électrique UA et le personnel de la centrale électrique TEP pour toute leur aide.

Materials

Adjustable speed motor (paddle wheel system) Leeson 174307 Lesson 174307.00, type: SCR Voltage; Amps:10
Aluminum weight boats Fisher Scientific 08-732-102 Fisherbrand Aluminum Weighing Dishes
Ammonium Iron (III) (NH₄)₅[Fe(C₆H₄O₇)₂] Fisher Scientific 1185 – 57 – 5 Medium preparation. Ammonium iron(III) citrate
Ammonium Phosphate Sigma-Aldrich 7722-76-1 This chemical is used for the optimized medium
Ampicillin sodium salt Sigma Aldrich A9518-5G This chemical is used for avoiding algae contamination
Autoclave Amerex Instrument Inc Hirayama HA300MII
Bacto agar Fisher Scientific BP1423500 Fisher BioReagents Granulated Agar
Bleach Clorox Germicidal Bleach, concentrated clorox
Boric Acid (H3BO3) Fisher Scientific 10043-35-3 Trace Elelements: Boric acid
Calcium chloride dihydrate (CaCl2*2H2O) Sigma-Aldrich 10035-04-8 Medium preparation. Calcium chloride dihydrate
Carboys (20 L) Nalgene – Thermo Fisher Scientific 2250-0050PK Polypropylene Carboy w/Handles
Centrifuge Beckman Coulter, Inc J2-21
Chloroform Sigma-Aldrich 67-66-3 This chemical is used for lipid extraction
Citraplex 20% Iron Loveland Products SDS No. 1000595582 -17-LPI https://www.fbn.com/direct/product/Citraplex-20-Iron#product_info
Cobalt (II) nitrate hexahydrate (Co(NO3)2*6H2O) Sigma-Aldrich 10026-22-9 Trace Elements: Cobalt (II) nitrate hexahydrate
Compressor Makita MAC700 This equipment is used for the injection CO2 system
Control Valve Sierra Instruments SmartTrak 100 This item needs to be customized for your application. In our case, it was used a 5% CO2 and 95% air mixture.
Copper (II) Sulfate Pentahydrate (CuSO4*5H2O) Sigma-Aldrich 7758-99-8 Trace Elements: Copper (II) Sulfate Pentahydrate
Data Logger: Campbell unit CR3000 Scientific Campbell CR3000 This equipment is used for controlling all the system, motoring and recording data
Dissolvde Oxygen Solution Campbell Scientific 14055 Dissolved oxygen electrolyte solution DO6002 – Lot No. 211085
Dissolved Oxygen probe Sensorex  DO6400/T Dissolved Oxygen Sensor with Digital Communication
Electroconductivity calibration solution Ricca Chemical Company 2245 – 32 ( R2245000-1A ) Conductivity Standard, 5000 uS/cm at 25C (2620 ppm TDS as NaCl)
Electroconductivity probe sensor Hanna Instruments HI3003/D Flow-thru Conductivity Probe – NTC Sensor, DIN Connector, 3m Cable
Ethylenediaminetetraacetic acid disodium salt dihydrate (Na2EDTA*2H2O) Sigma-Aldrich 6381-92-6 Medium Preparation: Ethylenediaminetetraacetic acid disodium salt dihydrate
Filters Fisher Scientific 09-874-48 Whatman Binder-Free Glass Microfiber Filters
Flasks Fisher scientific 09-552-40 Pyrex Fernbach Flasks
Furnace Hogentogler Model: F6020C-80 Thermo Sicentific Thermolyne F6020C – 80 Muffle Furnace
Glass dessicator VWR International LLC 75871-430 Type 150, 140 mm of diameter
Glass funnel Fisher Scientific FB6005865 Fisherbrand Reusable Glass Long-Stem Funnels
Laminar flow hood Fisher Hamilton Safeair Fisher Hamilton Stainless Safeair hume hood
Magnesium sulfate heptahydrate (MgSO4*7H2O) Fisher Scientific 10034 – 99 – 8 Medium Preparation: Magnesium sulfate heptahydrate
Methanol Sigma-Aldrich 67-56-1 Lipid extraction solvent
Micro bubble Diffuser Pentair Aquatic Eco-Systems 1PMBD075 This equipment is used for the injection CO2 system
Microalgae: Chlorella Sorokiniana NAABB DOE 1412
Microoscope Carl Zeiss 4291097
Microwave assistant extraction MARS, CEM Corportation CEM Mars 5 Xtraction 230/60 Microwave Accelerated Reaction System. Model: 907601
MnCl2*4H2O Sigma-Aldrich 13446-34-9 Manganese(II) chloride tetrahydrate
Mortars Fisher Scientific FB961B Fisherbrand porcelein mortars
Nitrogen evaporator Organomation N-EVAP 112 Nitrogen Evaporatpr (OA-SYS Heating System)
Oven VWR International LLC 89511-410 Forced Air Oven
Paddle Wheel 8-blade horizontal axis propeller. This usually comes as part of the paddlewheel reactor.
Paddle wheel motor Leeson M1135042.00 Leeson, Model: CM34025Nz10C; 1/4 HP; Volts 90; FR 34; 62 RPM.
Pestles Fisher Scientific FB961M Fisherbrand porcelein pestles
pH and EC Transmitter Hanna Instruments HI98143 Hanna Instruments HI98143-04 pH and EC Transmitter with Galvanic isolated 0-4V.
pH calibration solutions Fisher Scientific 13-643-003 Thermo Scientific Orion pH Buffer Bottles
pH probe sensor Hanna Instruments HI1006-2005 Hanna Instruments HI1006-2005 Teflon pH Electrode with matching pin 5m.
Pippete tips Fisher Scientific 1111-2821 1000 ul TipOne graduated blue tip in racks
Pippetter Fisher Scientific 13-690-032 Eppendorf Reserch plus Variable Adjustable Volume Pipettes: Single-channel
Plastic cuvettes Fisher scientific 14377017 BrandTech BRAND Plastic Cuvettes
Plates Fisher scientific 08-757-100D Corning Falcon Bacteriological Petri Dishes with Lid
Potash This chemical is used for the optimazed medium preparation. It was bought in a fertilizer local company
Potassium phosphate dibasic (K2HPO4) Sigma-Aldrich 7758 -11 – 4 Medium Preparation: Potassium phosphate dibasic
Pyrex reusable Media Storage Bottles Fisher scientific 06-414-2A 1 L and 2 L bottels – PYREX GL45 Screw Caps with Plug Seals
Raceway Pond Similar equipment can be bought at https://microbioengineering.com/products
Real Time Optical Density Sensor University of Arizona This equipment was design and build by a member of the group
RS232 Cable Sabrent Sabrent USB 2.0 to Serial (9-Pin) DB-9 RS-232 Converter Cable, Prolific Chipset, Hexnuts, [Windows 10/8.1/8/7/VISTA/XP, Mac OS X 10.6 and Above] 2.5 Feet (CB-DB9P)
Shaker Table Algae agitation 150 rpm
Sodium Carbonate (Na2CO3) Sigma-Aldrich 497-19-8 Sodium carbonate
Sodium molybdate dihydrate (Na2MoO4*2H2O) Sigma-Aldrich 10102-40-6 Medium Preparation: Sodium molybdate dihydrate
Sodium nitrate (NaNO3) Sigma-Aldrich 7631-99-4 Medium Preparation: Sodium nitrate
Spectophotometer Fisher Scientific Company 14-385-400 Thermo Fisher Scientific – 10S UV-Vis GENESTYS Spectrophotometer cylindrical Longpath cell holder; internal reference dectector, Xenon flash lamp; dual silicon photodiode; 240V, 50 to 60Hz selected automatically.
Test tubes Fisher Scientific 14-961-27 Fisherbrand Disposable Borosilicate Glass Tubes with Plain End (10 ml)
Thermocouples type K Omega KMQXL-125G-6
Urea Sigma-Aldrich 2067-80-3 Urea
Vacuum filtration system Fisher Scientific XX1514700 MilliporeSigma Glass Vacuum Filter Holder, 47 mm. The system includes: Ground glass flask attachment, coarse-frit glass filter support, and flask
Vacuum pump Grainger Marathon Electric AC Motor Thermally protected G588DX – MOD 5KH36KNA510X. HP 1/4. RPM 1725/1425
Zinc sulfate heptahydrate (ZnSO4*7H2O) Sigma-Aldrich 7446-20-0 Zinc sulfate heptahydrate

References

  1. . The Intergovernmental Panel on Climate Change Available from: https://www.ipcc.ch/ (2018)
  2. Songolzadeh, M., Soleimani, M., Ravanchi, M., Songolzadeh, R. Carbon Dioxide Separation from Flue Gases: A Technological, Review Emphasizing Reduction in Greenhouse Gas Emissions. The Scientific World Journal. 2014, 1-34 (2014).
  3. Litynski, J., Klara, S., McIlvried, H., Srivastava, R. The United States Department of Energy’s Regional Carbon Sequestration Partnerships program: A collaborative approach to carbon management. Environ International. 32 (1), 128-144 (2006).
  4. Cuellar-Bermudez, S., Garcia-Perez, J., Rittmann, B., Parra-Saldivar, R. Photosynthetic Bioenergy Utilizing CO2: an Approach on Flue Gases Utilization for Third Generation Biofuels. Journal of Clean Production. 98, 53-65 (2014).
  5. Cheah, W., Show, P., Chang, J., Ling, T., Juan, J. Biosequestration of Atmospheric CO2 and Flue Gas-Containing CO2 by Microalgae. Bioresource Technology. 184, 190-201 (2014).
  6. Kao, C., et al. Utilization of Carbon Dioxide in Industrial Flue Gases for the Cultivation of Microalga Chlorella sp. Bioresource Technology. 166, 485-493 (2014).
  7. White, C., Strazisar, B., Granite, E., Hoffman, S., Pennline, H. Separation and Capture of CO2 from Large Stationary Sources and Sequestration in Geological Formations. Journal of the Air and Waste Management Association. 53 (10), 1172-1182 (2003).
  8. Benemann, J. CO2 Mitigation with Microalgae Systems. Pergamon Energy Conversion Management Journal. 38, 475-479 (1997).
  9. U.S.Department of Energy. The Capture , Utilization and Disposal of Carbon Dioxide from Fossil Fuel-Fired Power Plants. Energy. 2, (1993).
  10. Granite, E., O’Brien, T. Review of Novel Methods for Carbon Dioxide Separation from Flue and Fuel Gases. Fuel Processesing Technology. 86 (14-15), 1423-1434 (2005).
  11. Benemann, J. Utilization of Carbon Dioxide from Fossil Fuel-Burning Power Plants with Biological Systems. Energy Conversion and Management. 34 (9-11), 999-1004 (1993).
  12. Joshi, C., Nookaraju, A. New Avenues of Bioenergy Production from Plants: Green Alternatives to Petroleum. Journal of Petroleum & Environmental Biotechnology. 03 (07), 3 (2012).
  13. Chisti, Y. Constraints to commercialization of algal fuels. Journal of Biotechnology. 22, 166-186 (2013).
  14. Han, S., Jin, W., Tu, R., Wu, W. Biofuel production from microalgae as feedstock: current status and potential. Critical Reviews in Biotechnology. 35 (2), 255-268 (2015).
  15. Lam, M., Lee, K. Potential of using organic fertilizer to cultivate Chlorella vulgaris for biodiesel production. Applied Energy. 94, 303-308 (2012).
  16. de Godos, I., et al. Evaluation of carbon dioxide mass transfer in raceway reactors for microalgae culture using flue gases. Bioresource Technology. 153, 307-314 (2014).
  17. Posten, C., Schaub, G. Microalgae and terrestrial biomass as source for fuels a process view. Journal of Biotechnology. 142 (1), 64-69 (2009).
  18. Demirbas, M. Biofuels from algae for sustainable development. Applied Energy. 88 (10), 3473-3480 (2011).
  19. Shelef, G., Sukenik, A., Green, M. . Microalgae Harvesting and Processing A Literature Review. , (1984).
  20. Pawlowski, A., Mendoza, J., Guzmán, J., Berenguel, J., Acién, F., Dormido, S. Effective utilization of flue gases in raceway reactor with event-based pH control for microalgae culture. Bioresource Technology. 170, 1-9 (2014).
  21. Zhu, B., Sun, F., Yang, M., Lu, L., Yang, G., Pan, K. Large-scale biodiesel production using flue gas from coal-fired power plants with Nannochloropsis microalgal biomass in open raceway ponds. Bioresource Technology. 174, 53-59 (2014).
  22. Kaštánek, F., et al. In-field experimental verification of cultivation of microalgae Chlorella sp. using the flue gas from a cogeneration unit as a source of carbon dioxide. Waste Management & Research. 28 (11), 961-966 (2010).
  23. Yadav, G., Karemore, A., Dash, S., Sen, R. Performance evaluation of a green process for microalgal CO2 sequestration in closed photobioreactor using flue gas generated in-situ. Bioresource Technology. 191, 399-406 (2015).
  24. Zhao, B., Su, Y., Zhang, Y., Cui, G. Carbon dioxide fixation and biomass production from combustion flue gas using energy microalgae. Energy. 89, 347-357 (2015).
  25. He, L., Chen, A., Yu, Y., Kucera, L., Tang, Y. Optimize Flue Gas Settings to Promote Microalgae Growth in Photobioreactors via Computer Simulations. Journal of Visualized Experiments. (80), e50718 (2013).
  26. He, L., Subramanian, V., Tang, Y. Experimental analysis and model-based optimization of microalgae growth in photo-bioreactors using flue gas. Biomass and Bioenergy. 41, 131-138 (2012).
  27. Pidwirny, M. . Fundamentals of Physical Geography, 2nd ed. , (2006).
  28. Van Den Hende, S., Vervaeren, H., Boon, N. Flue gas compounds and microalgae: (Bio-) chemical interactions leading to biotechnological opportunities. Biotechnology Advances. 30 (2012), 1405-1424 (2012).
  29. Jia, F., Kacira, M., Ogden, K. Multi-wavelength based optical density sensor for autonomous monitoring of microalgae. Sensors (Switzerland). 15 (9), 22234-22248 (2015).
  30. Unkefer, C., et al. Review of the algal biology program within the National Alliance for Advanced Biofuels and Bioproducts. Algal Research. 22, 187-215 (2017).
  31. Neofotis, P., et al. Characterization and classification of highly productive microalgae strains discovered for biofuel and bioproduct generation. Algal Research. 15, 164-178 (2016).
  32. Huesemann, M., Van Wagenen, J., Miller, T., Chavis, A., Hobbs, S., Crowe, B. A screening model to predict microalgae biomass growth in photobioreactors and raceway ponds. Biotechnology Bioengineering. 110 (6), 1583-1594 (2013).
  33. Huesemann, M., et al. Estimating the Maximum Achievable Productivity in Outdoor Ponds: Microalgae Biomass Growth Modeling and Climate Simulated Culturing. Microalgal Production for Biomass and High-Value Products. 28 (2016), 113-137 (2016).
  34. Ramezan, M., Skone, T., Nsakala, N., Lilijedahl, G. . Carbon Dioxide Capture from Existing Coal-Fired Power Plants. , 268 (2007).
  35. Huesemann, M., et al. A validated model to predict microalgae growth in outdoor pond cultures subjected to fluctuating light intensities and water temperatures. Algal Research. 13, 195-206 (2016).
  36. Mendoza, J., et al. Fluid-dynamic characterization of real-scale raceway reactors for microalgae production. Biomass and Bioenergy. 54, 267-275 (2013).
  37. Algae Cultivation for Carbon Capture and Utilization Workshop. . Algae Cultivation for Carbon Capture and Utilization Workshop. , (2017).
  38. Park, J., Craggs, R., Shilton, A. Wastewater treatment high rate algal ponds for biofuel production. Bioresource Technology. 102 (1), 35-42 (2011).
  39. Mata, T., Martins, A., Caetano, N. Microalgae for biodiesel production and other applications: A review. Renewewable and Sustainable Energy Reviews. 14 (1), 217-232 (2010).
  40. Qiu, R., Gao, S., Lopez, P., Ogden, K. Effects of pH on cell growth, lipid production and CO2 addition of microalgae Chlorella sorokiniana. Algal Research. 28, 192-199 (2017).
  41. Molina Grima, E., Fernández, F., Garcıa Camacho, F., Chisti, Y. Photobioreactors: light regime, mass transfer, and scaleup. Journal of Biotechnology. 70 (1-3), 231-247 (1999).
  42. Padmanabhan, Y. P. Technical insight on the requirements for CO2-saturated growth of microalgae in photobioreactors. 3 Biotech. 7 (2), 1-7 (2017).
  43. Vonshak, A., Torzillo, G. Environmental Stress Physiology. Handbook of Microalgal Culture. 4 (2007), 57-82 (2007).
  44. Morales, M., Sánchez, L., Revah, S. The impact of environmental factors on carbon dioxide fixation by microalgae. Federation of European Microbiological Society Microbiology Letters. 365 (3), 1-11 (2018).
  45. Cuaresma, M., Janssen, M., Vílchez, C., Wijffels, R. Horizontal or vertical photobioreactors? How to improve microalgae photosynthetic efficiency. Bioresource Technology. 102 (8), 5129-5137 (2011).
  46. Richmond, A., Zou, N. Efficient utilisation of high photon irradiance for mass production of photoautotrophic micro-organisms. Journal of Applied Phycology. 11 (1), 123-127 (1999).
  47. Kurpan, D., Silva, A., Araújo, O., Chaloub, R. Impact of temperature and light intensity on triacylglycerol accumulation in marine microalgae. Biomass and Bioenergy. 72, 280-287 (2015).
  48. Maedal, K., Owadai, M., Kimura, N., Karubd, I. CO2 fixation from the flue gas on coal-fired thermal power plant by microalgae To screen microalgac which arc suitable for direct CO2 fixation , microalgae were sampled from. Energy Conversion Managment. 36 (6-9), 717-720 (1995).
  49. Sakai, N., Sakamoto, Y., Kishimoto, N., Chihara, M., Karube, I. Strain from Hot Springs Tolerant to High Temperature and high CO2. Energy Conversion Managment. 36 (6-9), 693-696 (1995).
  50. Lam, M., Lee, K., Mohamed, A. Current status and challenges on microalgae-based carbon capture. International Journal of Greenhouse Gas Control. 10, 456-469 (2012).
  51. Raeesossadati, M., Ahmadzadeh, H., McHenry, M., Moheimani, N. CO2 Bioremediation by Microalgae in Photobioreactors: Impacts of Biomass and CO2 Concentrations, Light, and Temperature. Algal Research. 6, 78-85 (2014).
  52. Mendoza, J., et al. Oxygen transfer and evolution in microalgal culture in open raceways. Bioresource Technology. 137, 188-195 (2013).
  53. Carvalho, A., Malcata, F., Meireles, A. Microalgal Reactors A Review of Enclosed System Designs and Performances. Biotechnology Progress. 22 (6), 1490-1506 (2006).
  54. Pires, J., Alvim-Ferraz, M., Martins, F., Simões, M. Carbon dioxide capture from flue gases using microalgae: Engineering aspects and biorefinery concept. Renewable and Sustainable Energy Reviews. 16 (5), 3043-3053 (2012).
  55. Lam, M., Lee, K. Microalgae biofuels: A critical review of issues, problems and the way forward. Biotechnology Advances. 30 (3), 673-690 (2012).
  56. Chisti, Y. Biodiesel from microalgae beats bioethanol. Trends in Biotechnology. 26 (3), 126-131 (2008).
  57. K̈oppen, W., Volken, E., Brönnimann, S. The Thermal Zones of the Earth According to the duration of Hot, Moderate and Cold Periods and to the Impact of Heat on the Organic. Meteorologische Zeitschrift. 20 (3), 351-360 (2011).
  58. Lammers, P., et al. Review of the Cultivation Program within the National Alliance for Advanced Biofuels and Bioproducts. Algal Research. 22, 166-186 (2017).

Play Video

Citer Cet Article
Acedo, M., Gonzalez Cena, J. R., Kiehlbaugh, K. M., Ogden, K. L. Coupling Carbon Capture from a Power Plant with Semi-automated Open Raceway Ponds for Microalgae Cultivation. J. Vis. Exp. (162), e61498, doi:10.3791/61498 (2020).

View Video