Summary

Vaskulær støbning af voksne og tidlige postnatal mus lunger til Micro-CT Imaging

Published: June 20, 2020
doi:

Summary

Formålet med denne teknik er ex vivo visualisering af lungearteriale netværk af tidlige postnatal og voksne mus gennem lungeinflation og injektion af en radio-uigennemsigtig polymer-baseret forbindelse via lungearterien. Potentielle anvendelser for støbt væv er også drøftet.

Abstract

Blodkar danner indviklede netværk i 3-dimensionelle rum. Derfor er det vanskeligt visuelt at forstå, hvordan vaskulære netværk interagerer og opfører sig ved at observere overfladen af et væv. Denne metode giver et middel til at visualisere den komplekse 3-dimensionelle vaskulære arkitektur i lungen.

For at opnå dette indsættes et kateter i lungepulsåren, og vaskulaturen skylles samtidig af blod og forstørres kemisk for at begrænse resistens. Lungerne er derefter oppustet gennem luftrøret ved et standardtryk og polymerforbindelsen infunderes i den vaskulære seng ved en standard strømningshastighed. Når hele arterielt netværk er fyldt og lov til at helbrede, lunge vaskulaturen kan visualiseres direkte eller afbildet på en mikro-CT (μCT) scanner.

Når det udføres med succes, kan man sætte pris på lungearterie netværk i mus lige fra tidlige postnatal aldre til voksne. Derudover, mens demonstreret i lungearterie seng, denne metode kan anvendes på enhver vaskulær seng med optimeret kateter placering og slutpunkter.

Introduction

Fokus for denne teknik er visualisering af lungearterial arkitektur ved hjælp af en polymer-baseret forbindelse i mus. Mens omfattende arbejde er blevet udført på systemiske vaskulære senge såsom hjerne, hjerte og nyre1,2,3,4,5, mindre information er til rådighed om forberedelse og påfyldning af lungearterial netværk. Formålet med denne undersøgelse er derfor at uddybe tidligerearbejde 6,,7,8 oggive en detaljeret skriftlig og visuel reference, at efterforskerne nemt kan følge for at producere billeder i høj opløsning af lungearterietræet.

Mens der findes mange metoder til mærkning og billeddannelse lunge vaskulatur, såsom magnetisk resonans imaging, ekkokardiografi, eller CT angiografi9,10, mange af disse modaliteter undlader at tilstrækkeligt fylde og / eller fange de små fartøjer, begrænse omfanget af, hvad der kan studeres. Metoder som seriel sektionsopdeling og genopbygning giver høj opløsning , men er tids-/arbejdskrævende11,12,13. Omgivende bløddelsintegritet er kompromitteret i traditionel korrosionsstøbning10,13,14,15,16. Selv dyrs alder og størrelse bliver faktorer, når de forsøger at indføre et kateter eller, opløsningen mangler. Polymerindsprøjtningsteknikken fylder derimod arterierne til kapillærniveau, og når den kombineres med μCT, giver den mulighed for uovertruffen opløsning5. Prøver fra muselunger så unge som postnatal dag 14 er blevet støbt8 og behandlet i løbet af få timer. Disse kan scannes på ubestemt tid, eller endda sendes til histologisk forberedelse / elektronmikroskopi (EM) uden at gå på kompromis med den eksisterende bløde væv17. De vigtigste begrænsninger ved denne metode er de indledende omkostninger ved CT-udstyr/software, udfordringer med nøjagtig overvågning af intravaskulært tryk og manglende evne til at indsamle data i længderetningen hos det samme dyr.

Dette papir bygger på eksisterende arbejde for yderligere at optimere lungearterie injektion teknik og skubbe alder / størrelse relaterede grænser ned til postnatal dag 1 (P1) for at give slående resultater. Det er mest nyttigt for teams, der ønsker at studere arteriel vaskulære netværk. Derfor giver vi ny vejledning til kateterplacering/stabilisering, øget kontrol over påfyldningshastighed/volumen og fremhæver bemærkelsesværdige faldgruber for øget støbningssucces. Resulterende kaster kan derefter bruges til fremtidig karakterisering og morfologisk analyse. Måske endnu vigtigere, dette er den første visuelle demonstration, at vores viden, der fører brugeren gennem denne indviklede procedure.

Protocol

Alle metoder, der er beskrevet her, er blevet godkendt af Den Institutionelle Animal Care and Use Committee (ACUC) af National Heart Lung and Blood Institute. 1. Forberedelse Injicer musen intraperitoneally med heparin (1 enhed/g mus kropsvægt) og lad den ambulate i 2 min. Aflive dyret i et CO2 kammer. Arranger musen i en liggende position på et kirurgisk bord og fastgør alle fire lemmer til brættet med tape. Brug forstørrelse til fin dissektion.</…

Representative Results

En vellykket stemmer vil udstille ensartet påfyldning af hele lungepulsåre netværk. Vi demonstrerer dette i C57Bl/6J mus i alderen: Postnatal dag P90 (Figur 4A), P30 (Figur 4B),P7 (Figur 4C), og P1 (Figur 4D). Ved at kontrollere strømningshastigheden og visuelt overvåge fylde i realtid, pålidelige endepunkter af de mest distale vaskulatur blev opnået (<strong clas…

Discussion

Udført korrekt, denne metode giver slående billeder af lungearterial netværk, giver mulighed for sammenligning og eksperimenter i gnaver modeller. Flere kritiske skridt undervejs sikrer succes. For det første skal efterforskerne heparinisere dyret i den forberedende fase for at forhindre blodpropper i at danne i lungevaskulaturen og kamre i hjertet. Dette giver mulighed for fuldstændig arteriel transit af polymer sammensatte. For det andet, når punktering af mellemgulvet og fjerne brystkassen, passe på at beskytte…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Denne forskning blev delvist støttet af NHLBI Intramural Research Program (DIR HL-006247). Vi vil gerne takke NIH Mouse Imaging Facility for vejledning i billederhvervelse og analyse.

Materials

1cc syringe Becton Dickinson 309659
20ml Glass Scintillation Vials Fisher 03-340-25P
30G Needle Becton Dickinson 305106
50mL conical tubes Cornin 352098 For sample Storage and scanning
60cc syringe Becton Dickinson 309653
7-0 silk suture Teleflex 103-S
Analyze 12.0 Software AnalyzeDirect Inc. N/A Primary Software
Amira 6.7 Software Thermo Scientific N/A Alternative Sofware
CeramaCut Scissors 9cm Fine Science tools 14958-09
Ceramic Coated Curved Forceps Fine Science tools 11272-50
CO2 Tank Robert's Oxygen Co. n/a
Dual syringe pump Cole Parmer EW-74900-10
Dumont Mini-Forceps Fine Science tools 11200-14
Ethanol Pharmco 111000200
Formalin Sigma – Life Sciences HT501128
Gauze Covidien 441215
Hemostat Fine Science tools 13013-14
Heparin (1000USP Units/ml) Hospira NDC 0409-2720-01
Horos Software Horos Project N/A Alternative Sofware
induction chamber n/a n/a
Kimwipe Fisher 06-666 fiber optic cleaning wipe
Labelling Tape Fisher 15966
Magnetic Base Kanetec N/A
Micro-CT system SkyScan  1172
Microfil (Polymer Compound) Flowech Inc. Kit B – MV-122 8 oz. of MV compound; 8 oz. of diluent; MV-Curing Agent
Micromanipulator Stoelting 56131
Monoject 1/2 ml Insulin Syringe Covidien 1188528012
Octagon Forceps Straight Teeth Fine Science tools 11042-08
Parafilm Bemis company, Inc. #PM999
PE-10 tubing Instech BTPE-10
Phospahte buffered Saline BioRad #161-0780
Ring Stand Fisher S13747 Height 24in.
Sodium Nitroprusside sigma 71778-25G
Steel Plate N/A N/A 16 x 16 in. area, 1/16 in thick
Straight Spring Scissors Fine Science tools 15000-08
SURFLO 24G Teflon I.V. Catheter Santa Cruz Biotechnology 360103
Surgical Board Fisher 12-587-20 This is a converted slide holder
Universal 3-prong clamp Fisher S24280
Winged Inf. Set 25X3/4, 12" Tubing Nipro PR25G19
Zeiss Stemi-508 Dissection Scope Zeiss n/a

References

  1. Vasquez, S. X., et al. Optimization of microCT imaging and blood vessel diameter quantitation of preclinical specimen vasculature with radiopaque polymer injection medium. PLoS One. 6 (4), 19099 (2011).
  2. Hong, S. H., et al. Development of barium-based low viscosity contrast agents for micro CT vascular casting: Application to 3D visualization of the adult mouse cerebrovasculature. Journal of Neuroscience Research. 98 (2), 312-324 (2019).
  3. Perrien, D. S., et al. Novel methods for microCT-based analyses of vasculature in the renal cortex reveal a loss of perfusable arterioles and glomeruli in eNOS-/- mice. BMC Nephrology. 17, 24 (2016).
  4. Weyers, J. J., Carlson, D. D., Murry, C. E., Schwartz, S. M., Mahoney, W. M. Retrograde perfusion and filling of mouse coronary vasculature as preparation for micro computed tomography imaging. Journal of Visualized Experiments. (60), e3740 (2012).
  5. Zhang, H., Faber, J. E. De-novo collateral formation following acute myocardial infarction: Dependence on CCR2(+) bone marrow cells. Journal of Molecular and Cellular Cardiology. 87, 4-16 (2015).
  6. Kim, B. G., et al. CXCL12-CXCR4 signalling plays an essential role in proper patterning of aortic arch and pulmonary arteries. Cardiovascular Research. 113 (13), 1677-1687 (2017).
  7. Counter, W. B., Wang, I. Q., Farncombe, T. H., Labiris, N. R. Airway and pulmonary vascular measurements using contrast-enhanced micro-CT in rodents. American Journal of Physiology Lung Cellular and Molecular Physiology. 304 (12), 831-843 (2013).
  8. Phillips, M. R., et al. A method for evaluating the murine pulmonary vasculature using micro-computed tomography. Journal of Surgical Research. 207, 115-122 (2017).
  9. Schuster, D. P., Kovacs, A., Garbow, J., Piwnica-Worms, D. Recent advances in imaging the lungs of intact small animals. American Journal of Respiratory Cell and Molecular Biology. 30 (2), 129-138 (2004).
  10. Samarage, C. R., et al. Technical Note: Contrast free angiography of the pulmonary vasculature in live mice using a laboratory x-ray source. Medical Physics. 43 (11), 6017 (2016).
  11. Grothausmann, R., Knudsen, L., Ochs, M., Muhlfeld, C. Digital 3D reconstructions using histological serial sections of lung tissue including the alveolar capillary network. American Journal of Physiology Lung Cellular and Molecular Physiology. 312 (2), 243-257 (2017).
  12. Hayworth, K. J., et al. Imaging ATUM ultrathin section libraries with WaferMapper: a multi-scale approach to EM reconstruction of neural circuits. Front Neural Circuits. 8, 68 (2014).
  13. Bussolati, G., Marchio, C., Volante, M. Tissue arrays as fiducial markers for section alignment in 3-D reconstruction technology. Journal of Cellular and Molecular Medicine. 9 (2), 438-445 (2005).
  14. Preissner, M., et al. Application of a novel in vivo imaging approach to measure pulmonary vascular responses in mice. Physiological Reports. 6 (19), 13875 (2018).
  15. Junaid, T. O., Bradley, R. S., Lewis, R. M., Aplin, J. D., Johnstone, E. D. Whole organ vascular casting and microCT examination of the human placental vascular tree reveals novel alterations associated with pregnancy disease. Scientific Reports. 7 (1), 4144 (2017).
  16. Bolender, R. P., Hyde, D. M., Dehoff, R. T. Lung morphometry: a new generation of tools and experiments for organ, tissue, cell, and molecular biology. American Journal of Physiology. 265 (6), 521-548 (1993).
  17. Savai, R., et al. Evaluation of angiogenesis using micro-computed tomography in a xenograft mouse model of lung cancer. Neoplasia. 11 (1), 48-56 (2009).
  18. Ehling, J., et al. Micro-CT imaging of tumor angiogenesis: quantitative measures describing micromorphology and vascularization. American Journal of Pathology. 184 (2), 431-441 (2014).
  19. Sueyoshi, R., Ralls, M. W., Teitelbaum, D. H. Glucagon-like peptide 2 increases efficacy of distraction enterogenesis. Journal of Surgical Research. 184 (1), 365-373 (2013).
  20. Zhang, H., Jin, B., Faber, J. E. Mouse models of Alzheimer’s disease cause rarefaction of pial collaterals and increased severity of ischemic stroke. Angiogenesis. 22 (2), 263-279 (2019).
  21. Faight, E. M., et al. MicroCT analysis of vascular morphometry: a comparison of right lung lobes in the SUGEN/hypoxic rat model of pulmonary arterial hypertension. Pulmonary Circulation. 7 (2), 522-530 (2017).
  22. Fisher, S., Burgess, W. L., Hines, K. D., Mason, G. L., Owiny, J. R. Interstrain Differences in CO2-Induced Pulmonary Hemorrhage in Mice. Journal of the American Association for Laboratory Animal Science. 55 (6), 811-815 (2016).
  23. Munce, N. R., et al. Intravascular and extravascular microvessel formation in chronic total occlusions a micro-CT imaging study. JACC Cardiovascular Imaging. 3 (8), 797-805 (2010).
  24. Shifren, A., Durmowicz, A. G., Knutsen, R. H., Faury, G., Mecham, R. P. Elastin insufficiency predisposes to elevated pulmonary circulatory pressures through changes in elastic artery structure. Journal of Applied Physiology. 105 (5), 1610-1619 (2008).
  25. Sonobe, T., et al. Imaging of the closed-chest mouse pulmonary circulation using synchrotron radiation microangiography. Journal of Applied Physiology (1985). 111 (1), 75-80 (2011).
  26. Ritman, E. L. Micro-computed tomography of the lungs and pulmonary-vascular system. Proceedings of the American Thoracic Society. 2 (6), 477-480 (2005).
  27. Dinkel, J., et al. Intrinsic gating for small-animal computed tomography: a robust ECG-less paradigm for deriving cardiac phase information and functional imaging. Circulation: Cardiovascular Imaging. 1 (3), 235-243 (2008).
  28. Ashton, J. R., West, J. L., Badea, C. T. In vivo small animal micro-CT using nanoparticle contrast agents. Frontiers in Pharmacology. 6, 256 (2015).
  29. Ford, N. L., Thornton, M. M., Holdsworth, D. W. Fundamental image quality limits for microcomputed tomography in small animals. Medical Physics. 30 (11), 2869-2877 (2003).
  30. Boone, J. M., Velazquez, O., Cherry, S. R. Small-animal X-ray dose from micro-CT. Molecular Imaging. 3 (3), 149-158 (2004).
  31. Giuvarasteanu, I. Scanning electron microscopy of vascular corrosion casts–standard method for studying microvessels. Romanian Journal of Morphology and Embryology. 48 (3), 257-261 (2007).
  32. Polguj, M., et al. Quality and quantity comparison study of corrosion casts of bovine testis made using two synthetic kits: Plastogen G and Batson no 17. Folia Morphologica (Warsz). 78 (3), 487-493 (2019).
  33. Verli, F. D., Rossi-Schneider, T. R., Schneider, F. L., Yurgel, L. S., de Souza, M. A. Vascular corrosion casting technique steps. Scanning. 29 (3), 128-132 (2007).
  34. Azaripour, A., et al. A survey of clearing techniques for 3D imaging of tissues with special reference to connective tissue. Progress in Histochemistry and Cytochemistry. 51 (2), 9-23 (2016).
  35. Richardson, D. S., Lichtman, J. W. Clarifying Tissue Clearing. Cell. 162 (2), 246-257 (2015).
  36. Albers, J., Markus, M. A., Alves, F., Dullin, C. X-ray based virtual histology allows guided sectioning of heavy ion stained murine lungs for histological analysis. Scientific Reports. 8 (1), 7712 (2018).
  37. Katsamenis, O. L., et al. X-ray Micro-Computed Tomography for Nondestructive Three-Dimensional (3D) X-ray Histology. American Journal of Pathology. 189 (8), 1608-1620 (2019).
  38. Morales, A. G., et al. Micro-CT scouting for transmission electron microscopy of human tissue specimens. Journal of Microscopy. 263 (1), 113-117 (2016).
  39. Wen, H., et al. Correlative Detection of Isolated Single and Multi-Cellular Calcifications in the Internal Elastic Lamina of Human Coronary Artery Samples. Scientific Reports. 8 (1), 10978 (2018).
  40. Zamir, A., et al. Robust phase retrieval for high resolution edge illumination x-ray phase-contrast computed tomography in non-ideal environments. Scientific Reports. 6, 31197 (2016).
  41. Yu, B., et al. Evaluation of phase retrieval approaches in magnified X-ray phase nano computerized tomography applied to bone tissue. Optics Express. 26 (9), 11110-11124 (2018).
  42. Bidola, P., et al. Application of sensitive, high-resolution imaging at a commercial lab-based X-ray micro-CT system using propagation-based phase retrieval. Journal of Microscopy. 266 (2), 211-220 (2017).
  43. Norvik, C., et al. Synchrotron-based phase-contrast micro-CT as a tool for understanding pulmonary vascular pathobiology and the 3-D microanatomy of alveolar capillary dysplasia. American Journal of Physiology Lung Cellular and Molecular Physiology. 318 (1), 65-75 (2020).
  44. Weibel, E. R. Lung morphometry: the link between structure and function. Cell and Tissue Research. 367 (3), 413-426 (2017).
  45. Hsia, C. C., Hyde, D. M., Ochs, M., Weibel, E. R. An official research policy statement of the American Thoracic Society/European Respiratory Society: standards for quantitative assessment of lung structure. American Journal of Respiratory and Critical Care Medicine. 181 (4), 394-418 (2010).
  46. Sarhaddi, D., et al. Validation of Histologic Bone Analysis Following Microfil Vessel Perfusion. Journal of Histotechnology. 35 (4), 180-183 (2012).
  47. Ehling, J., et al. Quantitative Micro-Computed Tomography Imaging of Vascular Dysfunction in Progressive Kidney Diseases. Journal of the American Society of Nephrology. 27 (2), 520-532 (2016).

Play Video

Citer Cet Article
Knutsen, R. H., Gober, L. M., Sukinik, J. R., Donahue, D. R., Kronquist, E. K., Levin, M. D., McLean, S. E., Kozel, B. A. Vascular Casting of Adult and Early Postnatal Mouse Lungs for Micro-CT Imaging. J. Vis. Exp. (160), e61242, doi:10.3791/61242 (2020).

View Video