Мы описываем протокол для трехмерной модели совместной культуры инфицированных дыхательных путей, с использованием CFBE41o– клеток, макрофагов THP-1 и Pseudomonas aeruginosa, установленной на воздушно-жидком интерфейсе. Эта модель предоставляет новую платформу для одновременного тестирования эффективности антибиотиков, функции эпителиального барьера и воспалительных маркеров.
FDrug исследования для лечения легочных инфекций прогрессирует в направлении прогностических в пробирке модели высокой сложности. Многогранное присутствие бактерий в моделях легких может пере адаптировать эпителиальное расположение, в то время как иммунные клетки координируют воспалительный ответ против бактерий в микросреде. В то время как in vivo модели были выбор для тестирования новых анти-инфекционных в контексте муковисцидоза, они до сих пор не точно имитировать in vivo условия таких заболеваний у людей и результаты лечения. Сложные в пробирке модели инфицированных дыхательных путей на основе клеток человека (бронхиальные эпителиальные и макрофаги) и соответствующие патогенные микроорганизмы могли бы преодолеть этот разрыв и облегчить перевод новых противоинфекционных средств в клинику. Для этих целей была создана модель совместной культуры человеческого муковисцидоза бронхиальной эпителиальной клеточной линии CFBE41o– и макрофагов THP-1, полученных из моноцитов, имитирующих инфекцию человеческой бронхиальной слизистой P. aeruginosa в условиях воздушно-жидкого интерфейса (АЛИ). Эта модель настроена в течение семи дней, и одновременно оцениваются следующие параметры: целостность эпителиального барьера, трансмиграция макрофага, выживание бактерий и воспаление. Настоящий протокол описывает надежную и воспроизводимую систему оценки эффективности лекарств и реакции хозяев, которая может иметь отношение к обнаружению новых противоинфекционных препаратов и оптимизации их доставки аэрозолей в легкие.
Pseudomonas aeruginosa является соответствующим патогеном в муковисцидоз (CF), который способствует нарушению легочной ткани1. Производство полисахаридов, таких как альгинат и другие слизистые экзополисахариды, координирует прогресс заболевания, что приводит к цепкой бактериальной приверженности, ограничивает доставку антибиотиков бактериям и защищает бактерии от иммунной системы хозяина2. Переход P. aeruginosa от планктонной стадии к образованию биопленки является критическим вопросом в этом контексте, также способствуя возникновению толерантности к антибиотикам.
В контексте CF мышь в основном используется в качестве модели. Мыши, однако, не спонтанно развивать это заболевание с введением мутаций CF3. Большинство исследований бактериальной биопленки и восприимчивости к лекарственным препаратам проводились на абиотических поверхностях, таких как петри. Однако этот подход не представляет сложности in vivo. Например, отсутствуют важные биологические барьеры, включая иммунные клетки, а также мукозальный эпителий. Хотя P. aeruginosa довольно токсичен для эпителиальных клеток, некоторым группам удалось совместно культивировать более раннюю биопленку P. aeruginosa с человеческими бронхиальными клетками. Эти клетки возникли из муковисцидоза пациентов с мутацией CFTR (CFBE41o– клетки)4 и позволило оценить эффективность антибиотиков5 или оценить коррекцию белка CFTR во время инфекции6. Такая модель была показана для улучшения предсказуемости эффективности препарата, в дополнение к характеристике проблем с препаратами, которые не в более поздних стадиях разработки препарата7.
Однако в легких слизистый эпителий подвергается воздействию воздуха. Кроме того, иммунные клетки, присутствующие в дыхательных путях, как и макрофаги тканей, играют важную роль против вдыханных патогенов или частиц8. Макрофаги мигрируют через различные слои клеток, чтобы достичь бронхового просвета и бороться с инфекцией. Кроме того, вдыхаемые препараты также должны справиться с наличием слизи в качестве дополнительного неклеточного элемента легочного воздушно-кровавого барьера9. Действительно, было разработано несколько сложных трехмерных (3D) моделей in vitro, направленных на повышение релевантности in vivo. Системы совместного культуры не только повышают сложность систем in vitro для обнаружения лекарств, но и позволяют изучать взаимодействие клеток и клеток. Такая сложность была решена в исследованиях о миграции макрофагов10,высвобождении антимикробных пептидов нейтрофилами11,роли слизи в инфекции9,и эпителиальной клеточной реакции на чрезмерное повреждение12. Тем не менее, надежная CF-инфицированная модель in vitro, которая имеет генетическую мутацию в CF, которая подвергается воздействию воздуха (увеличенное физиологическое состояние), и интегрирует иммунные клетки, все еще отсутствует.
Чтобы преодолеть этот разрыв, мы описываем протокол стабильной 3D-культуры инфицированных дыхательных путей. Модель состоит из бронхиальных эпителиальных клеток и макрофагов человека, инфицированных P. aeruginosa и способных представлять как диффузный, так и иммунологический барьер. С целью тестирования противоинфекционных при достаточно высокой пропускной способности, эта со-культура была установлена на проницаемой мембране фильтра хорошо пластины вставки, используя две линии клеток человека: CFBE41o– и THP-1 моноцитов производных макрофагов. Кроме того, чтобы в конечном итоге изучить осаждение аэрозолизированных противоинфекционных13, модель была создана на воздухе жидкости интерфейс (ALI), а не жидкости покрытые условия (LCC).
Как мы сообщаем здесь, эта модель позволяет оценить не только выживаемость бактерий при лечении антибиотиками, но и цитотоксичность клеток, целостность эпителиального барьера, трансмиграцию макрофагов и воспалительные реакции, которые являются существенными параметрами для разработки лекарств.
Этот протокол сочетает в себе два соответствующих типа клеток для ингаляционной терапии легочных дыхательных путей: макрофаги и CF бронхиальный эпителий. Эти клетки посеяны на противоположных сторонах проницаемых опорных вставок, что позволяет клеточному воздействию воздуха (так называемые условия воздушно-жидкого интерфейса (ALI). Эта со-культура клеток-хозяев впоследствии заражена P. aeruginosa. Обе линии клеток-хозяев имеют человеческое происхождение: эпителиальные клетки представляют муковисцидоз бронхиального эпителия, с мутацией на канале CF (CFBE41o–), и THP-114 клетки хорошо характеризуется макрофагом, как клеточная линия. Слияние эпителиального слоя сначала допускается для формирования на верхней стороне хорошо пластины вставки до макрофагов, как клетки добавляются в противоположном отсеке. После того, как совместно культуры устанавливается в АЛИ, система прививается с P. aeruginosa на апсиа. Эта зараженная система совместной культуры затем используется для оценки эффективности антибиотика, например, тобрамицина. Анализируются следующие конечные точки: эпителиальная целостность барьера с точки зрения трансэпителиальной электрической резистентности (TEER), визуализация клеточно-клеточных и клеточно-бактериальных взаимодействий confocal лазерной сканирующей микроскопией (CLSM), бактериальное выживание путем подсчета колониообразующих единиц (CFU), выживаемость клеток-хозяев (цитотоксичность) и высвобождение цитокинов.
В настоящем документе описывается протокол для 3D-культуры инфицированных дыхательных путей, образованной человеческой муковисцидоз бронхиальной эпителиальной клеточной линии CFBE41o- и человека моноцитов производных макрофаг клеточной линии THP-1. Протокол позволяет оценить целостност?…
The authors have nothing to disclose.
Эта работа получила финансирование из Программы Европейского союза «ГОРИЗОНТ 2020» по исследованиям, технологическим разработкам и демонстрации в соответствии с грантовым соглашением No 642028 H2020-MSCA-ITN-2014, NABBA – проектированием и разработкой передовых наномедицин для преодоления биологических барьеров и лечения тяжелых заболеваний. Мы благодарим д-ра Ана Коста и д-ра Дженни Juntke за большую поддержку в развитии совместно-культуры, Ольга Хартвиг, для научной иллюстрации, Аня Хонеккер, для анализа ELISA, Петра Кёниг, Яна Westhues и д-р Кьяра Де Росси за поддержку в области клеточной культуры, аналитики и микроскопии. Мы также благодарим Челси Торн за то, что она корректив нашу рукопись.
Accutase | Accutase | AT104 | |
Ampicillin | Carl Roth, Germany | HP62.1 | |
CASY TT Cell Counter and Analyzer | OLS Omni Life Sciences | – | |
CellTrace Far Red | Thermo Fischer | C34564 | |
Centrifuge Universal 320R | Hettich, Germany | 1406 | |
CFBE41o– cells | 1. Gruenert Cell Line Distribution Program 2. Sigma-Aldrich |
1. gift from Dr. Dieter C. Gruenert 2. SCC151 |
|
Chopstick Electrode Set for EVOM2, 4mm | World Precision Instruments, Sarasota, USA | STX2 | |
Confocal Laser-Scanning Microscope CLSM | Leica, Mannheim, Germany | TCS SP 8 | |
Cytokines ELISA Ready-SET-Go kits | Affymetrix eBioscience, USA | 15541037 | |
Cytokines Panel I and II | LEGENDplex Immunoassay (Biolegend, USA). | 740102 | |
Cytotoxicity Detection Kit (LDH) | Roche | 11644793001 | |
D-(+) Glucose | Merck | 47829 | |
Dako Fluorescence Mounting Medium | DAKO | S3023 | |
DAPI (4′,6-diamidino-2-phenylindole) | Thermo Fischer | D1306 | |
Epithelial voltohmmeter | World Precision Instruments, Sarasota, USA | EVOM2 | |
Falcon Permeable Support for 12 Well Plate with 3.0μm Transparent PET Membrane, Sterile | Corning, Amsterdam, Netherlands | 353181 | |
Fetal calf serum | Lonza, Basel, Switzerland | DE14-801F | |
Goat anti-mouse (H+L) Cross-adsorbed secondary Antibody, Alexa Fluor 633 | Invitrogen | A-21050 | |
L-Lactate Dehydrogenase (LDH), rabbit muscle | Roche, Mannheim, Germany | 10127230001 | |
LB broth | Sigma-Aldrich, Germany | L2897-1KG | |
MEM (Minimum Essential Medium) | Gibco Thermo Fisher Scientific Inc. | 11095072 | |
Non-Essential Amino Acids Solution (100X) | Gibco Thermo Fisher Scientific Inc. | 11140050 | |
P. aeruginosa strain PAO1 | American Type Culture Collection | 47085 | |
P. aeruginosa strain PAO1-GFP | American Type Culture Collection | 10145GFP | |
Paraformaldehyde Aqueous Solution -16% | EMS DIASUM | 15710-S | |
Phosphate buffer solution buffer | Thermo Fischer | 10010023 | |
Petri dishes | Greiner | 664102 | |
Phorbol 12-myristate 13-acetate (PMA) | Sigma, Germany | P8139-1MG | |
Precision Cover Glasses | ThorLabs | CG15KH | |
Purified Mouse anti-human ZO-1 IgG antibody | BD Transduction Laboratories | 610966 | |
Roswell Park Memorial Institute (RPMI) 1640 medium | Gibco by Lifetechnologies, Paisley, UK | 11875093 | |
Soda-lime glass Petri dish, 50 x 200 mm (height x outside diameter) | Normax, Portugal | 5058561 | |
Saponin | Sigma-Aldrich, Germany | S4521 | |
T75 culture flasks | Thermo Fischer | 156499 | |
THP-1 cells | Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ; Braunschweig, Germany) | No. ACC-16 | |
Tobramycin sulfate salt | Sigma | T1783-500MG | |
Trypsin-EDTA 0.05% | Thermo Fischer | 25300054 | |
Tween80 | Sigma-Aldrich, Germany | P1754 |