Summary

P. 阿鲁吉诺萨 气液界面中支气皮细胞和巨噬细胞的感染三维共培养,用于抗感染的临床前评估

Published: June 15, 2020
doi:

Summary

我们描述了一个协议,一个三维共培养模型的感染气道,使用CFBE41o 细胞,THP-1 巨噬细胞,和伪多莫纳斯aeruginosa,建立在空气-液体接口。该模型提供了一个新的平台,同时测试抗生素疗效,上皮屏障功能和炎症标记。

Abstract

f治疗肺部感染的Drug研究正在向高复杂性 的预测体外 模型发展。细菌在肺模型中的多方面存在可以重新适应上皮排列,而免疫细胞则协调对微环境中细菌的炎症反应。 虽然在囊性 纤维化的背景下,体内模型一直是测试新的抗感染药物的选择,但它们仍然 不能准确地模仿人类 此类疾病的体内条件和治疗结果。基于 人类细胞 (支气管上皮和巨噬细胞)和相关病原体的受感染气道的复杂体外模型可以弥补这一差距,并有助于将新的抗感染药物转化为临床。为此,建立了人类囊性纤维化支气管细胞系CFBE41o THP-1单细胞衍生巨噬细胞的共同培养模型,模拟 了P.aeruginosa 在空气-液体界面(ALI)条件下感染人类支气管粘膜。该模型在七天内建立,并同时评估以下参数:上皮屏障完整性、巨噬细胞迁移、细菌存活和炎症。本协议描述了一个强大且可重复的系统,用于评估药物疗效和宿主反应,该系统可能与发现新的抗感染药物和优化其气溶胶输送到肺部有关。

Introduction

伪多多多酸菌是 囊性纤维化(CF)中的相关病原体,有助于肺组织损伤1。多糖的生产,如藻酸盐和其他粘液外聚糖,协调疾病的进展,这导致顽强的细菌坚持,限制抗生素向细菌的输送,并保护细菌免受宿主免疫系统2。在这种情况下 ,P. aeruginosa从 浮游生物期过渡到生物膜形成是一个关键问题,也促进了抗生素耐受性的发生。

在 CF 的上下文中,鼠标主要用作模型。然而,小鼠不会自发地发展这种疾病与CF突变3的引入。大多数细菌生物膜开发和药物易感性研究是在非生物表面进行的,如培养皿。但是,此方法并不表示体内的复杂性。例如,重要的生物屏障是不存在的,包括免疫细胞以及粘膜上皮。虽然P.aeruginosa对上皮细胞相当有毒,但一些团体已经成功地与人类支气管细胞共同培育了早期的P.aeruginosa生物膜。这些细胞起源于囊性纤维化患者与CFTR突变(CFBE41o细胞)4,并允许评估抗生素疗效5或评估感染期间CFTR蛋白的纠正6。这种模式被证明可以提高药物疗效的可预测性,此外还能够对药物在药物开发后期阶段失败的问题进行定性。

然而,在肺,粘膜上皮暴露在空气中。此外,存在于气道中的免疫细胞,如组织巨噬细胞,对吸入的病原体或颗粒8起起至关重要的作用。巨噬细胞通过不同的细胞层迁移,到达支气管流明并对抗感染。此外,吸入的药物还必须应付粘液的存在作为肺气血屏障9的附加非细胞元素。事实上,已经开发了几个复杂的三 (3D)体外模型,旨在提高 体内的相关性 。联合培养系统不仅增加了药物发现 体外 系统的复杂性,而且能够研究细胞-细胞相互作用。这种复杂性在有关巨噬细胞迁移10、中性粒细胞释放11、粘液在感染中的作用9、上皮细胞对过度损伤的反应等研究中已经得到解决。然而,一个可靠的CF感染 体外 模型,功能在CF的基因突变,暴露在空气中(增加的生理条件),并整合免疫细胞仍然缺乏。

为了弥补这一差距,我们描述了一个协议,用于稳定受感染气道的人类3D共培养。该模型由人类CF支气管上皮细胞和巨噬细胞组成,感染了 P.aeruginosa, 能够代表扩散和免疫屏障。以在相当高的通量下测试抗感染物为目的,利用两种人类细胞系:CFBE41o THP-1单细胞衍生巨噬细胞,在井板插入物的渗透滤膜上建立了这种共培养物。此外,为了最终研究气溶胶抗感染剂13的沉积,该模型是在空气-液体界面(ALI)而不是液体覆盖条件(LCC)建立的。

正如我们在这里报告,这个模型不仅允许评估抗生素治疗的细菌生存,而且允许评估细胞毒性,上皮屏障完整性,巨噬细胞转运和炎症反应,这些都是药物开发的基本参数。

该协议结合了两种相关的细胞类型,用于肺气道的吸入治疗:巨噬细胞和CF支气管上皮。这些细胞在可渗透支撑刀片的对面播种,允许细胞暴露在空气中(称为空气-液体接口(ALI)条件)。这种宿主细胞的共培养随后感染了 P.aeruginosa。两个宿主细胞系都是人类起源的:上皮细胞代表囊性纤维化支气管上皮,在CF通道(CFBE41o-)上发生突变,THP-114 细胞是一个特征良好的巨噬细胞状细胞系。在将巨噬细胞样细胞添加到相反的隔间之前,首先允许在井板插入物的上侧形成汇合上皮层。一旦在ALI建立共同培养,系统就接种 了P.aeruginosa。 然后,这种受感染的联合培养系统用于评估抗生素的疗效,例如去布拉霉素。分析了以下终点:跨皮质电阻(TEER)、细胞和细胞-细菌相互作用的可视化、共生激光扫描显微镜(CLSM)、通过计数菌群形成单位(CFU)、宿主细胞生存(细胞毒性)和细胞因子释放的细菌存活率。

Protocol

1. 渗透支持插入中细胞的生长和分化 培养 CFBE41o- 在 含有 10% 胎儿小牛血清 (FCS)、1% 非必需氨基酸和 600 mg/L 葡萄糖的 T75 烧瓶中,其最低基本介质 (MEM) 含有 5% 的 CO2 气氛。每2~3天向细胞中加入新鲜介质。 在37°C下用3 mPin-乙二胺四聚氰胺四聚氰胺酸(EDTA)在烧瓶中达到70%汇合后分离细胞,15分钟。加入 7 mL 的新鲜 MEM,在室温 (RT) 下以 300 x g 离心 4 分钟?…

Representative Results

图1A 显示了在渗透支架的渗透支架的渗透侧和基础侧生长24小时后,人类支气管上皮细胞和巨噬细胞共同培养的形态。上皮屏障完整性由较高的TEER(834°cm2)和CLSM通过免疫固结蛋白ZO-1(图1B)显示。在未感染的CFBE41o的屏障完整性方面观察到的相同结果- 单一培养可以在未受感染的上皮-巨噬细胞共培养物中看到。 为…

Discussion

本文描述了受感染气道的3D共培养方案,由人类囊性纤维化支气管上皮细胞系CFBE41o和人类单细胞衍生巨噬细胞系THP-1组成。该协议允许评估上皮屏障的完整性,巨噬细胞迁移,细菌生存和炎症,这是测试药物疗效和宿主反应时同时的重要参数。模型中的新颖性在于将上皮细胞(即人类CF细胞系和巨噬细胞)与急性细菌感染(即P.aeruginosa)结合在一起。上皮细胞的急性感染证明是由抗生素(即…

Divulgations

The authors have nothing to disclose.

Acknowledgements

根据第642028号H2020-MSCA-ITN-2014、NABBA -设计和开发先进的纳米药物,用于研究、技术开发和示范项目,这项工作得到了欧盟HORIZON 2020计划的资助,以克服生物障碍并治疗严重疾病。我们感谢安娜·科斯塔博士和珍妮·容特克博士对共同文化的发展给予的大力支持,感谢阿尔加·哈特维格为ELISA测定、佩特拉·科尼格、贾娜·韦斯特胡斯博士和基亚拉·德罗西博士提供的科学插图,感谢他们对细胞培养、分析和显微镜的支持。我们也感谢切尔西·索恩校对我们的手稿。

Materials

Accutase Accutase AT104
Ampicillin Carl Roth, Germany HP62.1
CASY TT Cell Counter and Analyzer OLS Omni Life Sciences
CellTrace Far Red Thermo Fischer C34564
Centrifuge Universal 320R Hettich, Germany 1406
CFBE41o cells 1. Gruenert Cell Line Distribution Program
2. Sigma-Aldrich
1. gift from Dr. Dieter C. Gruenert
2. SCC151
Chopstick Electrode Set for EVOM2, 4mm World Precision Instruments, Sarasota, USA STX2
Confocal Laser-Scanning Microscope CLSM Leica, Mannheim, Germany TCS SP 8
Cytokines ELISA Ready-SET-Go kits Affymetrix eBioscience, USA 15541037
Cytokines Panel I and II LEGENDplex Immunoassay (Biolegend, USA). 740102
Cytotoxicity Detection Kit (LDH) Roche 11644793001
D-(+) Glucose Merck 47829
Dako Fluorescence Mounting Medium DAKO S3023
DAPI (4′,6-diamidino-2-phenylindole) Thermo Fischer D1306
Epithelial voltohmmeter World Precision Instruments, Sarasota, USA EVOM2
Falcon Permeable Support for 12 Well Plate with 3.0μm Transparent PET Membrane, Sterile Corning, Amsterdam, Netherlands 353181
Fetal calf serum Lonza, Basel, Switzerland DE14-801F
Goat anti-mouse (H+L) Cross-adsorbed secondary Antibody, Alexa Fluor 633 Invitrogen A-21050
L-Lactate Dehydrogenase (LDH), rabbit muscle Roche, Mannheim, Germany 10127230001
LB broth Sigma-Aldrich, Germany L2897-1KG
MEM (Minimum Essential Medium) Gibco Thermo Fisher Scientific Inc. 11095072
Non-Essential Amino Acids Solution (100X) Gibco Thermo Fisher Scientific Inc. 11140050
P. aeruginosa strain PAO1 American Type Culture Collection 47085
P. aeruginosa strain PAO1-GFP American Type Culture Collection 10145GFP
Paraformaldehyde Aqueous Solution -16% EMS DIASUM 15710-S
Phosphate buffer solution buffer Thermo Fischer 10010023
Petri dishes Greiner 664102
Phorbol 12-myristate 13-acetate (PMA) Sigma, Germany P8139-1MG
Precision Cover Glasses ThorLabs CG15KH
Purified Mouse anti-human ZO-1 IgG antibody BD Transduction Laboratories 610966
Roswell Park Memorial Institute (RPMI) 1640 medium Gibco by Lifetechnologies, Paisley, UK 11875093
Soda-lime glass Petri dish, 50 x 200 mm (height x outside diameter) Normax, Portugal 5058561
Saponin Sigma-Aldrich, Germany S4521
T75 culture flasks Thermo Fischer 156499
THP-1 cells Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ; Braunschweig, Germany) No. ACC-16
Tobramycin sulfate salt Sigma T1783-500MG
Trypsin-EDTA 0.05% Thermo Fischer 25300054
Tween80 Sigma-Aldrich, Germany P1754

References

  1. Cutting, G. R. Cystic fibrosis genetics: from molecular understanding to clinical application. Nature Reviews Genetics. 16 (1), 45-56 (2015).
  2. Lyczak, J. B., Cannon, C. L., Pier, G. B. Establishment of Pseudomonas aeruginosa infection: Lessons from a versatile opportunist. Microbes and Infection. 2 (9), 1051-1060 (2000).
  3. Wilke, M., Buijs-Offerman, R. M., et al. Mouse models of cystic fibrosis: Phenotypic analysis and research applications. Journal of Cystic Fibrosis. 10, 152-171 (2011).
  4. Moreau-Marquis, S., Stanton, B. A., O’Toole, G. A. Pseudomonas aeruginosa biofilm formation in the cystic fibrosis airway. Pulmonary Pharmacology and Therapeutics. 21 (4), 595-599 (2008).
  5. Yu, Q., et al. In vitro evaluation of tobramycin and aztreonam versus Pseudomonas aeruginosa biofilms on cystic fibrosis-derived human airway epithelial cells. Journal of Antimicrobial Chemotherapy. 67 (11), 2673-2681 (2012).
  6. Moreau-Marquis, S., Redelman, C. V., Stanton, B. a., Anderson, G. G. Co-culture models of Pseudomonas aeruginosa biofilms grown on live human airway cells. Journal of visualized experiments : JoVE. (44), e2186 (2010).
  7. Stanton, B. A., Coutermarsh, B., Barnaby, R., Hogan, D. Pseudomonas aeruginosa reduces VX-809 stimulated F508del-CFTR chloride secretion by airway epithelial cells. PLoS ONE. 10 (5), 1-13 (2015).
  8. Lambrecht, B. N., Prins, J., Hoogsteden, H. C. Lung dendritic cells and host immunity to infection. European Respiratory Journal. (18), 692-704 (2001).
  9. Murgia, X., De Souza Carvalho, C., Lehr, C. M. Overcoming the pulmonary barrier: New insights to improve the efficiency of inhaled therapeutics. European Journal of Nanomedicine. 6 (3), 157-169 (2014).
  10. Ding, P., Wu, H., Fang, L., Wu, M., Liu, R. Transmigration and phagocytosis of macrophages in an airway infection model using four-dimensional techniques. American Journal of Respiratory Cell and Molecular Biology. 51 (1), 1-10 (2014).
  11. Hartl, D., Tirouvanziam, R., et al. Innate Immunity of the Lung: From Basic Mechanisms to Translational Medicine. Journal of Innate Immunity. 10 (5-6), 487-501 (2018).
  12. Esposito, S., et al. Manipulating proteostasis to repair the F508del-CFTR defect in cystic fibrosis. Molecular and cellular pediatrics. 3 (1), 13 (2016).
  13. Hein, S., Bur, M., Schaefer, U. F., Lehr, C. M. A new Pharmaceutical Aerosol Deposition Device on Cell Cultures (PADDOCC) to evaluate pulmonary drug absorption for metered dose dry powder formulations. European Journal of Pharmaceutics and Biopharmaceutics. 77 (1), 132-138 (2011).
  14. Kletting, S., Barthold, S., et al. Co-culture of human alveolar epithelial (hAELVi) and macrophage (THP-1) cell lines. Altex. 35 (2), 211-222 (2018).
  15. Schwende, H., Fitzke, E., Ambs, P., Dieter, P. Differences in the state of differentiation of THP-1 cells induced by phorbol ester and 1,25-dihydroxyvitamin D3. Journal of leukocyte biology. 59 (4), 555-561 (1996).
  16. Castoldi, A., Empting, M., et al. Aspherical and Spherical InvA497-Functionalized Nanocarriers for Intracellular Delivery of Anti-Infective Agents. Pharmaceutical Research. 36 (1), 1-13 (2019).
  17. Ebensen, T., Delandre, S., Prochnow, B., Guzmán, C. A., Schulze, K. The Combination Vaccine Adjuvant System Alum/c-di-AMP Results in Quantitative and Qualitative Enhanced Immune Responses Post Immunization. Frontiers in cellular and infection microbiology. 9, 31 (2019).
  18. Brockman, S. M., Bodas, M., Silverberg, D., Sharma, A., Vij, N. Dendrimer-based selective autophagy-induction rescues δF508-CFTR and inhibits Pseudomonas aeruginosa infection in cystic fibrosis. PLoS ONE. 12 (9), 1-17 (2017).
  19. Anderson, G. G., Moreau-Marquis, S., Stanton, B. A., O’Toole, G. A. In vitro analysis of tobramycin-treated Pseudomonas aeruginosa biofilms on cystic fibrosis-derived airway epithelial cells. Infection and Immunity. 76 (4), 1423-1433 (2008).
  20. Moreau-Marquis, S., Bomberger, J. M., et al. The DeltaF508-CFTR mutation results in increased biofilm formation by Pseudomonas aeruginosa by increasing iron availability. American journal of physiology. Lung cellular and molecular physiology. 295, 25-37 (2008).
  21. Braakhuis, H. M., Kloet, S. K., et al. Progress and future of in vitro models to study translocation of nanoparticles. Archives of Toxicology. 89 (9), 1469-1495 (2015).
  22. Bosshart, H., Heinzelmann, M. THP-1 cells as a model for human monocytes. Annals of Translational Medicine. 4 (21), 4-7 (2016).
  23. Daigneault, M., Preston, J. a., Marriott, H. M., Whyte, M. K. B., Dockrell, D. H. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS ONE. 5 (1), (2010).
  24. Bismarck, P. V., Schneppenheim, R., Schumacher, U. Successful treatment of pseudomonas aeruginosa respiratory tract infection with a sugar solution – A case report on a lectin based therapeutic principle. Klinische Padiatrie. 213 (5), 285-287 (2001).
  25. Klinger-Strobel, M., Lautenschläger, C., et al. Aspects of pulmonary drug delivery strategies for infections in cystic fibrosis – where do we stand. Expert Opinion on Drug Delivery. 5247, 1-24 (2015).
  26. Ehrhardt, C., Collnot, E. -. M., et al. Towards an in vitro model of cystic fibrosis small airway epithelium: characterisation of the human bronchial epithelial cell line CFBE41o-. Cell and tissue research. 323 (3), 405-415 (2006).
  27. Anderson, G. G., Kenney, T. F., Macleod, D. L., Henig, N. R., O’Toole, G. A. Eradication of Pseudomonas aeruginosa biofilms on cultured airway cells by a fosfomycin/tobramycin antibiotic combination. Pathogens and Disease. 67 (1), 39-45 (2013).
  28. Cavalieri, F., Tortora, M., Stringaro, A., Colone, M., Baldassarri, L. Nanomedicines for antimicrobial interventions. Journal of Hospital Infection. 88 (4), 183-190 (2014).
  29. Savla, R., Minko, T. Nanotechnology approaches for inhalation treatment of fibrosis. Journal of Drug Targeting. 21 (10), 914-925 (2013).
  30. Ho, D. -. K., et al. Challenges and strategies in drug delivery systems for treatment of pulmonary infections. European Journal of Pharmaceutics and Biopharmaceutics. 144, 110-124 (2019).

Play Video

Citer Cet Article
Montefusco-Pereira, C. V., Horstmann, J. C., Ebensen, T., Beisswenger, C., Bals, R., Guzmán, C. A., Schneider-Daum, N., Carvalho-Wodarz, C. d. S., Lehr, C. P. aeruginosa Infected 3D Co-Culture of Bronchial Epithelial Cells and Macrophages at Air-Liquid Interface for Preclinical Evaluation of Anti-Infectives. J. Vis. Exp. (160), e61069, doi:10.3791/61069 (2020).

View Video