Hier presenteren we gedetailleerde protocollen voor monoculaire visuele ontbering en oculaire dominantie plasticiteit analyse, die belangrijke methoden voor het bestuderen van de neurale mechanismen van visuele plasticiteit tijdens de kritieke periode en de effecten van specifieke genen op visuele ontwikkeling.
Monoculaire visuele ontbering is een uitstekend experimenteel paradigma om primaire visuele corticale respons plasticiteit induceren. In het algemeen is de reactie van de cortex op het contralaterale oog op een stimulus veel sterker dan de respons van het ipsilaterale oog in het verrekijkersegment van de primaire visuele cortex van de muis (V1). Tijdens de zoogdierkritische periode zal het hechten van het contralaterale oog resulteren in een snel verlies van responsiviteit van V1-cellen tot contralaterale oogstimulatie. Met de voortdurende ontwikkeling van transgene technologieën gebruiken steeds meer studies transgene muizen als experimentele modellen om de effecten van specifieke genen op oculaire dominantie (OD) plasticiteit te onderzoeken. In deze studie introduceren we gedetailleerde protocollen voor monoculaire visuele deprivatie en berekenen we de verandering in OD-plasticiteit bij muis V1. Na monoculaire ontbering (MD) gedurende 4 dagen tijdens de kritieke periode, worden de oriëntatiestemkrommen van elk neuron gemeten en worden de stemcurven van laag vier neuronen in V1 vergeleken tussen stimulatie van de ipsilaterale en contralaterale ogen. De contralaterale bias index (CBI) kan worden berekend met behulp van de oculaire OD-score van elke cel om de mate van OD-plasticiteit aan te geven. Deze experimentele techniek is belangrijk voor het bestuderen van de neurale mechanismen van OD plasticiteit tijdens de kritieke periode en voor het onderzoeken van de rollen van specifieke genen in neurale ontwikkeling. De belangrijkste beperking is dat de acute studie de verandering in neurale plasticiteit van dezelfde muis niet op een ander tijdstip kan onderzoeken.
Monoculaire visuele ontbering is een uitstekend experimenteel paradigma om V1 plasticiteit te onderzoeken. Om het belang van visuele ervaring in neurale ontwikkeling te bestuderen, David Hubel en Torsten Wiesel1,2 beroofde kittens van normaal zicht in een oog op verschillende tijdstippen en voor verschillende perioden van tijd. Vervolgens zagen ze de veranderingen in de reactieintensiteit in V1 voor de achtergestelde en niet-achtergestelde ogen. Hun resultaten toonden een abnormaal laag aantal neuronen reageren op het oog dat was gehecht gesloten in de eerste drie maanden. Echter, de reacties van de neuronen in de kittens bleef identiek in alle opzichten aan die van een normale volwassen kat het oog dat werd gehecht gesloten voor een jaar, en de kittens niet herstellen. MD bij volwassen katten kan geen OD plasticiteit veroorzaken. Daarom is de impact van visuele ervaring op V1 bedrading sterk tijdens een korte, goed gedefinieerde fase van ontwikkeling, voor en na welke dezelfde stimuli minder invloed hebben. Een dergelijke fase van verhoogde gevoeligheid voor visuele input staat bekend als de kritieke periode in de visuele cortex.
Hoewel de muis is een nachtdier, individuele neuronen in muis V1 hebben vergelijkbare eigenschappen als neuronen gevonden in katten3,4,5. In de afgelopen jaren, met de snelle ontwikkeling van transgene technologie, hebben een toenemend aantal studies in de visuele neurowetenschappen muizen gebruikt als experimenteel model6,7,8. In muis visuele studies, neurowetenschappers gebruiken mutanten en knock-out muislijnen, die controle over de genetische samenstelling van de muizen mogelijk te maken. Hoewel muizen V1 geen OD-kolommen hebben, vertonen enkele neuronen in de V1-verrekijkerzone significante OD-eigenschappen. De meeste cellen reageren bijvoorbeeld sterker op contralaterale stimulatie dan op ipsilaterale stimulatie. Tijdelijke sluiting van één oog tijdens de kritieke periode leidt tot een aanzienlijke verschuiving in de OD-indexverdeling9,10,11. Daarom kan MD worden gebruikt om een OD-plasticiteitsmodel op te zetten om te onderzoeken hoe genen die betrokken zijn bij neurale ontwikkelingsstoornissen corticale plasticiteit in vivo beïnvloeden.
Hier introduceren we een experimentele methode voor MD en stellen we een veelgebruikte methode (elektrofysiologische opname) voor om de verandering in OD-plasticiteit te analyseren tijdens monoculaire visuele deprivatie. De methode wordt al meer dan 20 jaar op grote schaal gebruikt in veel laboratoria12,13,14,15,16. Er zijn andere methoden die worden gebruikt bij het meten van de OD plasticiteit ook, zoals chronische visuele opgeroepen potentieel (VEP) opname17, en intrinsieke optische beeldvorming (IOI)18. Het grote voordeel van deze acute methode is dat het gemakkelijk te volgen is, en de resultaten zijn opmerkelijk betrouwbaar.
We presenteren een gedetailleerd protocol voor MD en het meten van OD plasticiteit door single unit opname. Dit protocol wordt veel gebruikt in de visuele neurowetenschappen. Hoewel het MD-protocol niet ingewikkeld is, zijn er enkele kritieke chirurgische ingrepen die zorgvuldig moeten worden gevolgd. Ten eerste zijn er twee belangrijke details die de kwaliteit van de stiksels garanderen. De hechting is voldoende stabiel als de steken geconcentreerd zijn in het mediale gedeelte van het ooglid. Bovendien wordt 3 μL lijm …
The authors have nothing to disclose.
Deze studie werd ondersteund door de National Natural Science Foundation of China (81571770, 81771925, 81861128001).
502 glue | M&G Chenguang Stationery Co., Ltd. | AWG97028 | |
Acquizition card | National Instument | PCI-6250 | |
Agarose | Biowest | G-10 | |
Amplifier | A-M system | Model 1800 | |
Atropine | Aladdin Bio-Chem Technology Co., Ltd | A135946-5 | |
Brain Stereotaxic Apparatus | RWD Life Science Co.,Ltd | 68001 | |
Cohan-Vannas spring scissors | Fine Science Tools | 15000-02 | |
Contact Lenses Solutions | Beijing Dr. Lun Eye Care Products Co., Ltd. | GM17064 | |
Cotton swabs | Henan Guangderun Medical Instruments Co.,Ltd | ||
Fine needle holder | SuZhou Stronger Medical Instruments Co.,Ltd | CZQ1370 | |
Forcep | 66 Vision Tech Co., Ltd. | 53320A | |
Forcep | 66 Vision Tech Co., Ltd. | 53072 | |
Forcep | 66 Vision Tech Co., Ltd. | #5 | |
Heating pad | Stryker | TP 700 T | |
Illuminator | Motic China Group Co., Ltd. | MLC-150C | |
Isoflurane | RWD Life Science Co.,Ltd | R510-22 | |
LCD monitor | Philips (China) Investment Co., Ltd. | 39PHF3251/T3 | |
Microscope | SOPTOP | SZMT1 | |
Noninvasive Vital Signs Monitor | Mouseox | ||
Oil hydraulic micromanipulator | NARISHIGE International Ltd. | PC-5N06022 | |
Petrolatum Eye Gel | Dezhou Yile Disinfection Technology Co., Ltd. | 17C801 | |
Spike2 | Cambridge Electronic Design, Cambridge, UK | Spike2 Version 9 | |
Surgical scissors | 66 Vision Tech Co., Ltd. | 54010 | |
Surgical scissors | 66 Vision Tech Co., Ltd. | 54002 | |
Suture Needle | Ningbo Medical Co.,Ltd | 3/8 arc 2.5*8 | |
Tungsten Electrode | FHC, Inc | L504-01B | |
Xylocaine | Huaqing |