In vivo изображение является мощным инструментом, который может быть использован для исследования клеточных механизмов, лежащих в основе развития нервной системы. Здесь мы описываем метод использования замедленной конфокальной микроскопии для визуализации большого количества многоцветных Brainbow-маркированных клеток в режиме реального времени в развивающейся нервной системе зебры.
Развитие позвоночной нервной системы требует точной координации сложного клеточного поведения и взаимодействий. Использование методов визуализации с высоким разрешением vivo может обеспечить четкое окно в эти процессы в живом организме. Например, за делением клеток и их потомством можно следовать в режиме реального времени по мере образования нервной системы. В последние годы технические достижения в области многоцветных методов расширили типы вопросов, которые могут быть исследованы. Многоцветный подход Brainbow может быть использован не только для различения между подобными клетками, но и для цветового кода нескольких различных клонов родственных клеток, каждый из которых происходит из одной клетки-прародителя. Это позволяет мультиплекс линии анализа многих различных клонов и их поведения одновременно во время разработки. Здесь мы описываем метод использования замедленной конфокальной микроскопии для визуализации большого количества многоцветных Brainbow-маркированных клеток в реальном времени в развивающейся нервной системе зебры. Это особенно полезно для следующих клеточных взаимодействий между клетками, которые трудно обозначить дифференциально с помощью традиционных промоутер-управляемых цветов. Наш подход может быть использован для отслеживания отношений линии между несколькими различными клонами одновременно. Большие наборы данных, генерируемые с помощью этого метода, предоставляют богатую информацию, которую можно количественно сравнить с генетическими или фармакологическими манипуляциями. В конечном счете полученные результаты могут помочь ответить на систематические вопросы о том, как развивается нервная система.
На ранних стадиях развития пулы специализированных клеток-прародителей делятся повторно в пролиферативных зонах, производя различные массивы дочерческих клеток. Клетки, рожденные в течение этого периода развития, затем дифференцируются и путешествуют, чтобы сформировать зарождающиеся органы. В нервной системе, прародители, такие как радиальная глия привести к незрелых нейронов в желудочковых зонах. По мере того как нейроны мигрируют от желудочков и созревают, расширяющаяся ткань в конечном итоге образует очень сложные структуры мозга1,,2,,33,44,6,. Координация между декорациями и дифференциации и миграции нейронов будет определять возможный размер, форму, и, следовательно, функции мозга, непосредственно влияющих на поведение7,8,9,10. Хотя жесткий контроль над этими процессами, безусловно, имеет решающее значение для нормального развития мозга, глобальные механизмы, которые регулируют эти динамики, не очень хорошо изучены. Здесь мы описываем инструмент для изучения развития нервной системы в клеточном разрешении, что позволяет исследователям визуализировать клетки-прародителя и нейроны in vivo в развивающемся мозге зебры с Brainbow и отслеживать их поведение с течением времени с помощью замедленной конфокальной микроскопии11. Этот подход также может быть адаптирован для визуализации других частей развивающегося эмбриона.
Чтобы наблюдать и различать среди клеток в развивающемся мозге зебры, мы адаптировали метод маркировки клеток Brainbow11. Brainbow использует случайно определенные, комбинаторные выражения трех различных флуоресцентных белков (FPs) для обозначения популяции клеток. В то время как выражение мракли иэкспрессии по умолчанию для экспрессии Brainbow является красным FP dTomato, рекомбинация фермента Cre recombinase приводит к экспрессии мцерулеана (циановый флуоресцентный белок, CFP) или желтый флуоресцентный белок (YFP)12,13. Совокупное количество каждого FP, выраженное в ячейке, придает ему уникальный оттенок, позволяющий четко ею визуальное различие с соседними клетками. Кроме того, когда клетка-прародитель делится, каждая клетка дочери унаследует цвет от своей материнской клетки, производя цветные клоны и позволяя исследователям отслеживать линию клеток11,14. Хотя первоначально используется для анализа нейронных схем у мышей12, Brainbow с тех пор было выражено в широком спектре типовых организмов, в том числе зебрафиш15.
Наша техника основывается на предыдущих методах многоцветной маркировки и визуализации, чтобы непосредственно изображения нескольких цветовых клонов с течением времени в живых зебры. Из-за их оптической прозрачности, как эмбрионы, зебра хорошо подходит для визуализации экспериментов16, и предыдущие исследования использовали Brainbow в зебры для изучения различных тканей, в том числе нервной системы11,15,17,18,19,20,21,22,23,24,25, 26,27. Способность непосредственно к изображению в живой организм, наряду с их быстрым развитием экс-утробы, делают зебры ценной моделью развития позвоночных. В отличие от мозга млекопитающих, вся пролиферативная зона заднего мозга зебры легко доступна для визуализации без нарушения его эндогенной среды6. Это позволяет проводить эксперименты в живом организме, а не в экстракорпорированных или стационарных препаратах тканей. В отличие от экспериментов с фиксированной визуализацией, исследования in vivo позволяют продольную конструкцию, производя многочасовые данные, которые могут быть проанализированы на модели, тем самым увеличивая вероятность наблюдения относительно редких событий. В зависимости от скорости и длины событий, представляющих интерес, исследователи могут выбрать для выполнения коротких (1-2 ч) или длинные (до 16 ч) эксперименты по визуализации по времени. С помощью зебры теплового шока промоутер 70 (hsp70, hsp), Brainbow выражение может быть временно контролируется28,29. Кроме того, мозаика выражение индуцированных этот промоутер хорошо подходит для маркировки и отслеживания многих клонов11.
Способность визуально идентифицировать несколько клонов в живом мозге является преимуществом этого метода. Важные предыдущие исследования, которые исследовали роль клонов в развитии нервной системы использовали ретровирусные векторы для обозначения одной клетки-прародителя и ее потомства с помощью одного FP или другого легко визуализированного белка. Такая маркировка позволяет исследователям наблюдать один клон с течением времени, либо in vitro или in vivo22,30,,31,,32,,33,,34,,35,,36,,37,,38. В отличие от методов отслеживания поведения клеток в пределах одного клона, различные цвета Brainbow позволяют исследователям наблюдать динамику среди клонов. Кроме того, с помощью Brainbow для обозначения многих клонов в головном мозге, дополнительные данные о клональном поведении собираются по отношению к методам, которые маркировать один клон11. Важно отметить, что описанные здесь подходы могут быть расширены для создания сравнения развития между рыбами, которые подверглись различным генетическим или фармакологическим манипуляциям18. В целом, эти преимущества делают промежуток времени в vivo confocal изображения Brainbow-выражения зебры идеально подходит для исследователей, исследующих развитие позвоночной нервной системы, особенно тех, кто заинтересован в роли клонов.
Этот протокол описывает метод визуализации клонов клеток-прародителей и нейронов в развивающихся задней мозг зебры и следовать за ними in vivo с помощью Brainbow и замедленной конфокальной микроскопии11. Основным преимуществом этого протокола по сравнению с исследованиями in vitro …
The authors have nothing to disclose.
Мы благодарим Я. А. Пана, Дж. Ливета и З. Тобиаса за технический и интеллектуальный вклад. Эта работа была поддержана Национальным научным фондом (Премия 1553764) и Благотворительным фондом М.Д. Мердока.
1.5mL transfer pipet | Globe Scientific, Inc. | 134020 | |
1-phenyl-2-thiourea (PTU) | Alfa Aesar | L06690 | Diluted to 0.2 mM in E3 to prevent embryo pigmentation |
50ml conical tubes | Corning | 352070 | For heat shocking embryos |
6 lb nylon fishing line | SecureLine | NMT250 | For making embryo manipulators |
7.5mL transfer pipet | Globe Scientific, Inc. | 135010 | |
CaCl2 | Sigma | C3881 | For E3 |
Cotton swabs | Puritan | 867-WC NO GLUE | For making embryo manipulators |
Cre recombinase | New England Biolabs | M0298M | |
Digital dry bath | Genemate | 490016-616 | Used to store LMA at 40°C |
Epifluorescence dissection scope | |||
Glass capillary tubes | World Precision Instruments | TW100F-4 | |
Incubator | Forma Scientific | 3158 | To maintain embryos at 28°C |
Injection plate molds | Adaptive Science Tools | TU-1 | |
Isotemp water bath | Fisher Scientific | 2320 | For heat shocking embryos |
KCl | AMRESCO | 0395 | For E3 and for DNA solution for injections |
Laser-scanning confocal microscope | Zeiss | LSM710 | |
LE agarose | Genemate | E3120 | To create agarose injection plates |
Low-melt agarose (LMA) | AMRESCO | J234 | |
Mating tanks | Aquaneering, Inc. | ZHCT100 | |
Methylene blue | Sigma | M9140 | For E3 |
MgSO4 | Sigma | 9397 | For E3 |
Micromanipulator | World Precision Instruments | M3301 | |
Micropipette Puller | Sutter Instrument Co. | P-97 | |
MS-222 Tricaine-S | Western Chemical, Inc. | Stock made at 4 mg/mL in reverse osmosis (RO) water, then added dropwise to E3 to final concentration of 0.2 mM to anesthetize embryos | |
NaCl | J.T. Baker | 4058-01 | For E3 |
Petri dishes (90 mm, 60 mm) | Genesee Scientific | 32-107G | To house embryos and create imaging chamber (60 mm) |
Phenol red | Sigma | P0290 | |
Soft stitch ring markers | Clover Needlecraft, Inc. | 354 | For creating imaging chamber with Petri dish |
Super glue (Ultra gel control) | Loctite | 1363589 | For making embryo manipulators |
Syringe needles | Beckton Dickinson | BD329412 | For dechorionating embryos |