Este protocolo sistemático describe un nuevo modelo animal de epilepsia postraumática después de una lesión cerebral traumática leve repetitiva. La primera parte detalla los pasos para la inducción de lesiones cerebrales traumáticas usando un modelo de caída de peso modificado. La segunda parte proporciona instrucciones sobre el enfoque quirúrgico para sistemas de adquisición de datos electroencefalográficos monocanal y multicanal.
La lesión cerebral traumática (TBI) es una de las principales causas de epilepsia adquirida. La TBI puede resultar en una lesión cerebral focal o difusa. La lesión focal es el resultado de fuerzas mecánicas directas, a veces penetrando a través del cráneo, creando una lesión directa en el tejido cerebral. Estos son visibles durante las imágenes cerebrales como áreas con contusión, laceración y hemorragia. Las lesiones focales inducen la muerte neuronal y la formación de cicatrices gliales y están presentes en el 20% a 25% de todas las personas que incurren en un TBI. Sin embargo, en la mayoría de los casos de TBI, las lesiones son causadas por fuerzas de aceleración-desaceleración y posterior cizallamiento tisular, lo que resulta en daño difuso no focal. Una subpoblación de pacientes con TBI continúa desarrollando epilepsia postraumática (TEP) después de un período de latencia de meses o años. Actualmente, es imposible predecir qué pacientes desarrollarán TEP, y las convulsiones en pacientes con TEP son difíciles de controlar, lo que requiere más investigación. Hasta hace poco, el campo se limitaba a sólo dos modelos animales/roedores con convulsiones post-traumáticas espontáneas validadas, ambos presentando grandes lesiones focales con pérdida masiva de tejido en la corteza y a veces estructuras subcorticales. A diferencia de estos enfoques, se determinó que la TBI difusa inducida mediante un modelo de caída de peso modificado es suficiente para iniciar el desarrollo de convulsiones convulsivas y no convulsivas espontáneas, incluso en ausencia de lesiones focales o pérdida de tejido. Al igual que los pacientes humanos con epilepsia postraumática adquirida, este modelo presenta un período de latencia después de la lesión antes de la aparición de la convulsión. En este protocolo, la comunidad recibirá un nuevo modelo de epilepsia postraumática, detallando cómo inducir TBI difuso no lesional seguido de monitoreo continuo de animales videoelectroencefalográficos a largo plazo en el transcurso de varios meses. Este protocolo detallará el manejo de animales, el procedimiento de caída de peso, la colocación de electrodos para dos sistemas de adquisición y los desafíos frecuentes encontrados durante cada uno de los pasos de la cirugía, el monitoreo postoperatorio y la adquisición de datos.
Cada año, TBI afecta a unos 60 millones de personas en todo el mundo. Las personas afectadas tienen un mayor riesgo de desarrollar epilepsia, que puede manifestarse años después de la lesión inicial. Aunque los TBI graves se asocian con un mayor riesgo de epilepsia, incluso la TBI leve aumenta la probabilidad de que un individuo desarrolle epilepsia1,2,3,4. Todos los TBI se pueden clasificar como focales, difusos o una combinación de ambos. La lesión cerebral difusa, presente en muchos TMI, si no en todos, es el resultado de tejidos cerebrales de diferentes densidades que se cortan entre sí debido a la desaceleración de la aceleración y las fuerzas de rotación. Por definición, la lesión difusa sólo se produce de forma aislada en lesiones cerebrales leves/concusivas no penetrantes, en las que no se pueden ver lesiones cerebrales en las exploraciones por tomografía computarizada5.
Actualmente hay dos problemas críticos en el manejo de pacientes que tienen, o están en riesgo de, desarrollar epilepsia post-traumática (TEP). La primera es que una vez que la ETE se ha manifestado, las convulsiones son resistentes a los medicamentos antiepilépticos disponibles (DeA)6. En segundo lugar, los DEA son igualmente ineficaces para prevenir la epileptogénesis, y no existen enfoques terapéuticos alternativos eficaces. Para hacer frente a este déficit y encontrar mejores dianas terapéuticas y candidatos para el tratamiento, será necesario explorar nuevos mecanismos celulares y moleculares en la raíz de PTE6.
Una de las características destacadas de la epilepsia postraumática es el período latente entre el evento traumático inicial y la aparición de convulsiones espontáneas, no provocadas y recurrentes. Los eventos que ocurren dentro de esta ventana temporal son un foco natural para los investigadores, ya que esta ventana de tiempo podría permitir el tratamiento y la prevención de la ETE por completo. Los modelos animales se utilizan más comúnmente para esta investigación porque ofrecen varios beneficios distintos, no menos importante de los cuales es que el monitoreo continuo de pacientes humanos sería a la vez poco práctico y costoso en tales períodos potencialmente largos de tiempo. Además, los mecanismos celulares y moleculares en la raíz de la epileptogénesis sólo se pueden explorar en modelos animales.
Se prefieren modelos animales con convulsiones postraumáticas espontáneas y epilepsia sobre los modelos en los que las convulsiones son inducidas después de TBI por medios menos relevantes fisiológicamente, como por chemoconvulsantes o estimulación eléctrica aguda, crónica o por leña. Los modelos espontáneos de convulsiones postraummáticas prueban cómo TBI modifica la red cerebral saludable que conduce a la epileptogénesis. Los estudios con estimulación adicional después de tAT evalúan cómo la exposición a TBI reduce el umbral de convulsiones y afecta la susceptibilidad a las convulsiones. Las ventajas de los modelos animales con convulsiones inducidas químicamente o con estimulación eléctrica están en el ensayo de los mecanismos específicos de refractoridad a los DEA y la eficacia de los DEA existentes y nuevos. Sin embargo, el grado de pertinencia y traducción de estos datos a los seres humanos puede ser ambiguo7 debido a lo siguiente: 1) los mecanismos de incautación pueden ser diferentes de los inducidos por TBI por sí solo; 2) no todos estos modelos conducen a convulsiones espontáneas7; 3) las lesiones creadas por el propio agente convulsivo, con la cánula necesaria para su parto, o estimulando la colocación de electrodos en estructuras de profundidad (por ejemplo, el hipocampo o la amígdala) ya pueden causar un aumento de la susceptibilidad a las convulsiones e incluso potenciales de campo epilepciforme del hipocampo7. Además, algunos agentes convulsivos (es decir, ácido kainic) producen lesiones y esclerosis directas del hipocampo, que no es típica después de la TBI difusa.
Hasta hace poco, sólo existían dos modelos animales de epilepsia postraumática: impacto cortical controlado (CCI, focal) o lesión por percusión fluida (FPI, focal y difusa)8. Ambos modelos resultan en lesiones focales grandes junto con pérdida de tejido, hemorragia y gliosis en roedores8. Estos modelos imitan la epilepsia postraumática inducida por lesiones focales grandes. Un estudio reciente demostró que el TBI difuso repetido (3x) es suficiente para el desarrollo de convulsiones espontáneas y epilepsia en ratones, incluso en ausencia de lesiones focales9,añadiendo un tercer modelo de ETE de roedores con convulsiones recurrentes espontáneas confirmadas. Este nuevo modelo imita los cambios celulares y moleculares inducidos por la TBI difusa, representando mejor a la población humana con TMI leves y conmovedores. En este modelo, el período latente de tres semanas o más antes de la aparición de la convulsión y la aparición de convulsiones tardías, espontáneas y recurrentes permite investigar las causas profundas de la epileptogénesis postraumática, probar la eficacia de los enfoques preventivos y los nuevos candidatos terapéuticos después de la aparición de la convulsión, y tiene potencial para el desarrollo de biomarcadores de epileptogénesis postraumática porque aproximadamente la mitad de los animales desarrollan epilepsia postraumática.
La elección del modelo animal para el estudio de la epilepsia postraumática depende de la cuestión científica, el tipo de lesión cerebral investigada y qué herramientas se utilizarán para determinar los mecanismos celulares y moleculares subyacentes. En última instancia, cualquier modelo de epilepsia postraumática debe demostrar tanto la aparición de convulsiones espontáneas después de TBI como un período de latencia inicial en un subconjunto de animales TBI, porque no todos los pacientes que incurren en un TBI van a desarrollar epilepsia. Para ello, en este protocolo se utiliza la electroencefalografía (EEG) con adquisición simultánea de vídeo. Comprender los aspectos técnicos detrás del hardware y los enfoques de adquisición de datos es fundamental para una interpretación precisa de los datos. Los aspectos críticos del hardware incluyen el tipo de sistema de grabación, el tipo de electrodos (tornillo o cable de alambre) y el material del que están hechos, la adquisición de vídeo sincronizado (como parte del sistema EEG o de terceros) y las propiedades del sistema informático. Es imperativo establecer los parámetros de adquisición adecuados en cualquier tipo de sistema dependiendo del objetivo del estudio, eventos EEG de interés, método de análisis adicional y sostenibilidad del almacenamiento de datos. Por último, debe tenerse en cuenta el método de configuración de electrodos (montaje), ya que cada uno tiene ventajas y desventajas y afectará a la interpretación de los datos.
Este protocolo detalla cómo utilizar el modelo de caída de peso Marmarou modificado10,11 para inducir lesiones difusas que resultan en convulsiones espontáneas, no provocadas y recurrentes en ratones, describe enfoques quirúrgicos para adquirir un EEG de vídeo continuo y multicanal y multicanal mediante montaje monopolar, bipolar o mixto.
A diferencia de los modelos CCI y FPI que inducen lesiones focales o difusas, el modelo de TBI difuso repetitivo descrito en este protocolo permite la inducción de lesiones difusas en ausencia de lesión cerebral focal y no requiere aberturas del cuero cabelludo o craneal y la inflamación asociada. Un beneficio adicional de la ausencia de craneectomía en este modelo es que permite no sólo implantar los electrodos para la grabación crónica continua del EEG, sino también la creación de una ventana craneal adelgazad…
The authors have nothing to disclose.
Este trabajo fue apoyado por R01 NS105807/NS/NINDS NIH HHS/Estados Unidos y CURE basado en una subvención CURE recibida del Comando de Investigación Médica y Materialdel del Ejército de los Estados Unidos, Departamento de Defensa (DoD), a través del Programa de Investigación de Salud Psicológica y Lesiones Cerebrales Traumáticas bajo el Premio No. W81XWH-15-2-0069. Ivan Zuidhoek es muy apreciado por la corrección del manuscrito.
0.10" screw | Pinnacle Technology Inc., KS, USA | 8209 | 0.10 inch long stainless steel |
0.10" screw | Pinnacle Technology Inc., KS, USA | 8403 | 0.10 inch long with pre-soldered wire lead |
0.12" screw | Pinnacle Technology Inc., KS, USA | 8212 | 0.12 inch long stainless steel |
1EEG headmount | Invitro1 (subsidiary of Plastics One), VA, USA | MS333/8-A/SPC | 3 individually Teflon-insulated platinum iridium wire electrodes (twisted or untwisted, 0.005 inch diameter) extending below threaded plastic pedestal |
2EEG/1EMG headmount | Pinnacle Technology Inc., KS, USA | 8201 | 2EEG/1EMG channels |
3% hydrogen peroxide | Pharmacy | ||
3EEG headmount | Pinnacle Technology Inc., KS, USA | 8235-SM-C | custom 6-Pin Connector for 3EEG channels |
Buprenorphine | Par Pharmaceuticals, Cos. Inc., Spring Valley, NY, USA | 060969 | |
Buprenorphine | Par Pharmaceuticals, Cos. Inc., Spring Valley, NY, USA | 060969 | |
C57BL/6 mice | Harlan/Envigo Laboratories Inc | male, 12-16 weeks old | |
C57BL/6 mice | The Jackson Laboratory | male, 12-16 weeks old | |
Carprofen | Zoetis Services LLC, Parsippany, NJ, USA | 026357 | NOTE: this drug is added during weight drop only if stereotactic electrode implantation will be performed on the same day |
Chlorhexidine antiseptic | Pharmacy | ||
Dental cement and solvent kit | Stoelting Co., USA | 51459 | |
Drill | Foredom | HP4-917 | |
Drill bit | Meisinger USA, LLC, USA | HM1-005-HP | 0.5 mm, Round, 1/4, Steel |
Dry sterilizer | Cellpoint Scientific, USA | Germinator 500 | |
EEG System 1 | Biopac Systems, CA, USA | ||
EEG System 2 | Pinnacle Technology Inc., KS, USA | ||
Ethanol ≥70% | VWR, USA | 71001-652 | KOPTEC USP, Biotechnology Grade (140 Proof) |
Eye ointment | Pro Labs Ltd, USA | Puralube Vet Ointment Sterile Ocular Lubricant available in general online stores and pharmacies | |
Fluriso liquid for inhalation anesthesia | MWI Veterinary Supply Co., USA | 502017 | |
Hair removal product | Church & Dwight Co., Inc., USA | Nair cream | |
Isoflurane | MWI Veterinary Supply Co., USA | 502017 | |
Povidone-iodine surgical solution | Purdue Products, USA | 004677 | Betadine |
Rimadyl/Carprofen | Zoetis Services LLC, Parsippany, NJ, USA | 026357 | |
Solder | Harware store | ||
Soldering iron | Weller, USA | WP35 | ST7 tip, 0.8mm |
Stainless steel disc | Custom made | ||
Sterile cotton swabs | |||
Sterile gauze pads | Fisher Scientific, USA | 22362178 | |
Sterile poly-lined absorbent towels pads | Cardinal Health, USA | 3520 | |
Tissue adhesive | 3M Animal Care Products, USA | 1469SB |