Cet article présente une méthode pour étudier le trafic de récepteur de glutamate (GluR) dans les cultures hippocampal primaires dissociées. Utilisant une approche d’alimentation par anticorps pour étiqueter les récepteurs endogènes ou surexprimés en combinaison avec des approches pharmacologiques, cette méthode permet d’identifier les mécanismes moléculaires régulant l’expression de surface du GluR en modulant processus d’internalisation ou de recyclage.
Les réponses cellulaires aux stimuli externes dépendent fortement de l’ensemble des récepteurs exprimés à la surface de la cellule à un moment donné. En conséquence, la population de récepteurs exprimés en surface s’adapte constamment et est soumise à des mécanismes stricts de régulation. L’exemple paradigmatique et l’un des événements de trafic les plus étudiés en biologie est le contrôle réglementé de l’expression synaptique des récepteurs du glutamate (GluRs). Les GluRs sont la médiation de la grande majorité de la neurotransmission excitatrice dans le système nerveux central et contrôlent les changements fonctionnels et structurels dépendants de l’activité physiologique aux niveaux synaptique et neuronal (p. ex., plasticité synaptique). Les modifications dans le nombre, l’emplacement, et la composition de sous-unité de la surface exprimée GluRs affectent profondément la fonction neuronale et, en fait, les changements dans ces facteurs sont associés à différentes neuropathies. Présenté ici est une méthode pour étudier le trafic de GluR dans les neurones primaires hippocampiques dissociés. Une approche d’« alimentation par anticorps » est utilisée pour visualiser différemment les populations de GluR exprimées à la surface et aux membranes internes. En étiquetant les récepteurs de surface sur les cellules vivantes et en les fixant à des moments différents pour permettre l’endocytose des récepteurs et/ou le recyclage, ces processus de trafic peuvent être évalués et étudiés de manière sélective. Il s’agit d’un protocole polyvalent qui peut être utilisé en combinaison avec des approches pharmacologiques ou la surexpression des récepteurs modifiés pour obtenir des informations précieuses sur les stimuli et les mécanismes moléculaires affectant le trafic de GluR. De même, il peut être facilement adapté pour étudier d’autres récepteurs ou protéines exprimées en surface.
Les cellules utilisent le processus actif de trafic pour mobiliser les protéines à des localisations sous-cellulaires spécifiques et exercer une réglementation spatiotemporal stricte sur leur fonction1. Ce processus est particulièrement important pour les récepteurs transmembranaires, car les réponses cellulaires à différents stimuli environnementaux reposent sur des cascades intracellulaires déclenchées par l’activation des récepteurs. Les cellules sont capables de modifier ces réponses en modifiant la densité, la localisation et la composition sous-unité des récepteurs exprimés à la surface des cellules par le biais de la régulation du trafic sous-cellulaire des récepteurs2. L’insertion de récepteurs nouvellement synthétisés dans la membrane plasmatique, ainsi que l’endocytose et le recyclage des récepteurs existants sont des exemples de processus de traite qui déterminent le pool net de récepteurs exprimés en surface2. De nombreux mécanismes moléculaires coopèrent pour réguler le trafic de protéines, y compris les interactions protéines-protéines et les modifications post-traductionnelles telles que la phosphorylation, l’ubiquitination ou la palmitoylation2.
La régulation du trafic de récepteurs est particulièrement nécessaire dans les cellules fortement polarisées avec des structures hautement spécialisées. L’exemple paradigmatique est le contrôle de la fonction neuronale par le trafic réglementé des récepteurs du glutamate (GluRs)3,4. Le glutamate, le principal neurotransmetteur excitateur, lie et active les GluRs exprimés en surface pour contrôler les fonctions neuronales physiologiques fondamentales telles que la neurotransmission synaptique et la plasticité synaptique. Le fait que le trafic altéré de GluR a été observé dans un large éventail de neuropathies, allant des désordres neurodevelopmental aux maladies neurodegenerative, accentue l’importance de ce processus5. Ainsi, la compréhension des événements moléculaires qui contrôlent le trafic de GluR est d’intérêt dans de nombreux domaines de recherche.
Dans ce protocole, une méthode basée sur l’alimentation des anticorps est utilisée pour quantifier le niveau de GluRs exprimés en surface dans les neurones hippocampiques primaires ainsi que pour évaluer comment les changements dans l’internalisation et le recyclage entraînent l’expression de surface nette observée. L’utilisation de la pharmacologie et/ou de la surexpression de récepteurs exogènes abritant des mutations spécifiques fait de ce protocole une approche particulièrement puissante pour l’étude des mécanismes moléculaires sous-jacents à l’adaptation neuronale à différents stimuli environnementaux. Un dernier exemple de l’utilité de ce protocole est d’étudier comment les changements multifactoriels dans l’environnement (comme dans les modèles de maladie) affectent le trafic de GluR par l’examen de l’expression de surface dans de tels modèles.
À l’aide d’exemples spécifiques, il est d’abord démontré comment une manipulation pharmacologique imitant la stimulation synaptique physiologique [LTP chimique (cLTP)] augmente l’expression de surface de la sous-unité endogène GluA1 du type AMPA de GluRs (AMPA) 6. Le trafic d’une forme phospho-mimétique surexprimée de la sous-unité GluN2B de Type NMDA de GluR (NMDA) est également analysé pour illustrer comment ce protocole peut être utilisé pour étudier la régulation du trafic de GluR par modifications. Bien que ces exemples spécifiques soient utilisés, ce protocole peut facilement être appliqué à d’autres GluRs et d’autres récepteurs et protéines qui possèdent des domaines extracellulaires antigéniques. Dans le cas où il n’y a pas d’anticorps disponibles pour les domaines extracellulaires, la surexpression des protéines épitopères extracellulaires (p. ex. Flag-, Myc-, GFP-tagged, etc.) peut aider à l’étiquetage des protéines.
Le protocole actuel fournit des instructions pour quantifier la densité et le trafic spécifiques du sous-type GluR à l’aide d’anticorps spécifiques. Ce protocole peut être utilisé pour étudier 1) l’expression totale de surface de GluR, 2) l’internalisation de GluR, et 3) le recyclage de GluR. Pour étudier chaque processus individuellement, il est conseillé de commencer par les articles 1 et 2 et de continuer avec les sections 3, 4 ou 5. Dans tous les cas, terminez avec les sections 6 et 8 (figure1).
L’interaction entre une cellule et son environnement (par exemple, la communication avec d’autres cellules, la réponse à différents stimuli, etc.) repose fortement sur l’expression correcte des récepteurs à la surface de la cellule. La régulation rapide et affinée du contenu des récepteurs expriméens en surface permet une réponse cellulaire appropriée à un environnement en constante évolution. Dans le cas particulier des neurones, des altérations dans le nombre, la localisation, et la composition de subunit…
The authors have nothing to disclose.
Nous remercions le Northwestern Center for Advanced Microscopy pour l’utilisation du microscope Nikon A1 Confocal et leur aide dans la planification et l’analyse des expériences. Cette recherche a été appuyée par nigMS (T32GM008061) (A. M. C.), ni NIA (R00AG041225) et une subvention de jeunes chercheurs du NARSAD de la Brain and Behavior Research Foundation (#24133) (A. S. -C.).
18 mm dia. #1.5 thick coverglasses | Neuvitro | GG181.5 | |
Alexa 555-conjugated goat anti-mouse secondary | Life Technologies | A21424 | |
Alexa 555-conjugated goat anti-rabbit secondary | Life Technologies | A21429 | |
Alexa 647-conjugated goat anti-mouse secondary | Life Technologies | A21236 | |
Alexa 647-conjugated goat anti-rabbit secondary | Life Technologies | A21245 | |
B27 | Gibco | 17504044 | |
CaCl2 | Sigma | C7902 | |
Corning Costar Flat Bottom Cell Culture Plates | Corning | 3513 | |
Dynasore | Tocris | 2897 | |
Glucose | Sigma | G8270 | |
Glycine | Tocris | 0219 | |
Goat anti-rabbit Fab fragments | Sigma | SAB3700970 | |
HEPES | Sigma | H7006 | |
KCl | Sigma | P9541 | |
L-Glutamine | Sigma | G7513 | |
Lipofectamine 2000 | Invitrogen | 11668019 | |
Mouse anti-GluA1 antibody | Millipore | MAB2263 | |
NaCl | Sigma | S6546 | |
Neurobasal Media | Gibco | 21103049 | |
NGS | Abcam | Ab7481 | |
Parafilm | Bemis | PM999 | |
PBS | Gibco | 10010023 | |
Pelco BioWave | Ted Pella | 36500 | |
PFA | Alfa Aesar | 43368 | |
Picrotoxin | Tocris | 1128 | |
Poly-D-lysine hydrobromide | Sigma | P7280 | |
ProLong Gold Antifade Mountant | Life Technologies | P36934 | |
Rabbit anti-GFP antibody | Invitrogen | A11122 | |
Rabbit anti-PSD-95 antibody | Cell Signaling | 2507 | |
Strychnine | Tocris | 2785 | |
Sucrose | Sigma | S0389 | |
Superfrost plus microscope slides | Fisher | 12-550-15 | |
Triton X-100 | Sigma | X100 | |
TTX | Tocris | 1078 |