Burada, floresan mikroorganizma ve tomurcuklanan Maya hücrelerinin floresans mikroskopisi görüntülerinin otomatik algılama ve niceliksel tanımı ile ilgili bir MATLAB uygulaması sunuyoruz.
Lipid metabolizması ve düzenlenmesi hem temel hem de uygulamalı yaşam bilimleri ve biyoteknolojinin ilgisini çekmektedir. Bu bağlamda, çeşitli maya türleri lipid metabolik araştırma modelleri veya endüstriyel lipid üretimi için kullanılır. Lipid damlacıkları son derece dinamik depolama organları ve onların hücresel içerik lipid metabolik durumun uygun bir okuma temsil eder. Floresan mikroskopisi, hücresel lipid damlacıkları nicel analizinde tercih edilen bir yöntemdir, çünkü yaygın olarak kullanılabilir donanıma dayanır ve bireysel lipid damlacıkları analizine izin verir. Ayrıca, mikroskobik görüntü analizi, genel analiz verimi büyük ölçüde artan otomatik olabilir. Burada, üç farklı model Maya türü içinde bireysel lipid damlacıkları otomatik algılama ve niceliksel açıklaması için deneysel ve analitik bir iş akışı tarif: fisyon Mayalar şizofrik pombe ve Şizofreyeve tomurcuklanan Maya Saccharomyces cerevisiae. Lipid damlacıkları bodipy 493/503 ile görselleştirilebilir ve hücre sınırlarının tanımlanmanıza yardımcı olmak için kültür medyasına hücre geçirmez floresan dekstran eklenir. Hücreler yeşil ve mavi kanallarda 3D epifluorescence mikroskopiye tabi tutulur ve elde edilen z yığını görüntüleri bir MATLAB boru hattı tarafından otomatik olarak işlenir. Prosedür, büyük elektronik tabloda veya istatistiksel paketlerdeki akış analizleri için uygun olan sekmeli bir formatta hücresel lipid damlacık içeriği ve bireysel lipid damlacık özellikleri üzerinde zengin nicel verileri çıkarır. Hücre lipid metabolizmasını etkileyen çeşitli koşullarda lipid damlacık içeriğinin örnek analizlerini sağlıyoruz.
Lipidler hücresel enerji ve karbon metabolizması, membran bileşenlerinin sentezini ve biyoaktif maddelerin üretimini önemli roller oynar. Lipid metabolizması çevresel koşullara, besin mevcudiyeti ve hücre döngüsü aşaması1‘ e göre ince ayarlı. İnsanlarda lipid metabolizması obezite, tip II diyabet ve kanser2gibi hastalıklara bağlı olmuştur. Endüstride, Mayalar gibi mikroorganizmalar tarafından üretilen lipidler, umut verici bir yenilenebilir dizel yakıt kaynağını temsil eder3. Hücreler sözde lipid damlacıkları (LDs) nötr lipidler depolar. Bu evrimsel olarak koruyucu organları triakilgliserler, steril esterler, bir dış fosfolipid Tek tabakalı ve ilişkili proteinler1oluşur. LDs endoplazmik reticulum kaynaklanan, hücre döngüsü veya büyüme faz dinamikleri uygulamak, ve hücresel lipid homeostazı için önemlidir1. LD numarası ve morfoloji, çeşitli büyüme koşullarında veya mutantların bir panelini taramasında lipid metabolizmasını asırken uygun bir vekil olarak kullanılabilir. Dinamik doğası göz önüne alındığında, bireysel LDs özelliklerini analiz yeteneğine teknikleri lipid metabolizması çalışmaları özellikle ilgi vardır.
Çeşitli maya türleri lipid ile ilgili metabolik yolları ve düzenlemeleri tanımlamak için kullanılan, ya da biyoteknolojide ilginç bileşikler veya yakıtlar üretmek için kullanılan1. Ayrıca, model Mayalar için, gibi tomurcuklanan Maya Saccharomyces cerevisiae veya uzaktan ilgili fisyon Maya mıtosaccharomyces pombe, Genom-geniş silme gerinim kütüphaneler kullanılabilir yüksek verim için kullanılabilir ekranlar4,5. Son zamanlarda ld kompozisyon ve dinamikleri S. pombeaçıklanan6,7,8,9, ve lipid metabolizması ile ilgili mutantlar gelişmekte olan model Maya izole edilmiştir Asoaccharomyces multiflorum10.
LD içerik ve dinamikleri incelemek için sayısız teknikler mevcuttur. Çoğu, Nile Red veya BODIPY 493/503 gibi lipophilik boyalar ile LDs boyama çeşit istihdam. İkincisi daha dar uyarma ve emisyon spektrumunu gösterir ve fosfolipidler (membranların)11‘ in aksine nötr lipidlere (LDs) doğru özgüllüğü artırmıştır. Fluorimetrik ve akış-sitometri yöntemleri, depolama lipid içeriğini etkileyen genler ve büyüme koşullarını ortaya çıkarmak için çeşitli mantar türlerde başarıyla kullanılmıştır12,13,14,15. Bu yöntemler yüksek verimlilik uygulamaları için uygun olmakla beraber, hücrelerde bireysel LDs ‘nin sayılar ve morfolojisi ölçülemez, bu da büyüme koşulları ile genotürleri arasında önemli ölçüde farklılık gösterebilir. Tutarlı Raman saçılma veya dijital holografik microskopi ld düzeyinde veri verim, ancak özel pahalı ekipman16,17,18gerektiren etiket içermeyen yöntemlerdir. Diğer taraftan floresans mikroskobu, LD içeriğiyle ilgili ayrıntılı veriler sağlayabilir, yaygın olarak kullanılabilen enstrümanlar ve görüntü analiz yazılım araçlarını kullanarak. Çeşitli analiz iş akışları var ki, görüntü verilerinden hücre/ld algılamada farklı derece sofistike ve otomasyon özelliğine sahiptir ve büyük LDs19,20 ile Metazoan hücreler gibi değişik hücre türleri için optimize edilmiştir , 21ya da tomurcuklanan17,22,23. Bu yaklaşımlardan bazıları yalnızca 2D (örneğin, maksimum projeksiyon görüntülerde) çalışır, bu da hücresel LD içeriğini güvenilir bir şekilde tanımlamayabilir. Bilgi için, herhangi bir alet ld içerik ve morfoloji fisyon Maya mikroskobik veri belirlenmesi için yok. Otomatik ve sağlam LD seviyesi analizlerinin geliştirilmesi, yüksek hassasiyet ve gelişmiş istatistiksel güç getirir ve çoklu Maya türlerinde ideal olarak nötr lipid içeriği hakkında zengin bilgiler sağlar.
Maya hücrelerinin 3D floresan mikroskopisi görüntülerden LD içerik analizi için bir iş akışı geliştirdik. Canlı hücreler, LDs ‘nin görselleştirilmesi ve sırasıyla hücre sınırlarını belirlemek için bodipy 493/503 ve Cascade Blue dekstran ile lekelenecektir. Hücreler cam slaytlar üzerinde immobilize ve standart bir epifluorescence mikroskop kullanarak z-yığını görüntüleme tabi tutulur. Görseller, istatistiksel analizler için yaygın olarak kullanılan (ticari) bir paket olan MATLAB ‘de uygulanan otomatik bir boru hattı tarafından işlenir. Ardışık düzen, Görüntü önişleme, segmentasyon (hücreler vs. arka plan, ölü hücrelerin kaldırılması) ve LD kimliği gerçekleştirir. LD boyutu ve floresan yoğunluğu gibi zengin LD düzeyinde veriler, daha sonra büyük elektronik tablo yazılım araçlarıyla uyumlu sekmeli bir formatta sağlanır. İş akışı, azot kaynağının mevcudiyeti S. pombe24‘ te lipid metabolizmasında etkisini belirlemek için başarıyla kullanıldı. Şimdi, s. pombe, s. multiflorum ve s. cerevisiae‘deki iş akışının işlevselliğini, hücresel ld içeriğini etkileyen büyüme koşullarını veya mutantları kullanarak gösteriyoruz.
Lipid metabolizması ve düzenlenmesi anlayışı hem temel biyoloji, hem de klinik ve biyoteknolojik uygulamalar için önemlidir. LD içeriği, hücrelerin lipid metabolizması durumunun uygun bir şekilde okunmasını, Floresan Mikroskobu ise LD içerik belirlenmesi için kullanılan önemli yöntemlerden biri olarak temsil eder. Sunulan protokol, tek LDs ‘nin üç farklı ve morfolojik olarak farklı Maya türlerinde otomatik olarak algılanmasını ve niceliksel açıklamasını sağlar. Bizim bilgi için, hiçbir b…
The authors have nothing to disclose.
Bu çalışma Charles Üniversitesi hibe PRIMUS/MED/26, GAUK 1308217 ve SVV 260310 tarafından desteklenmektedir. Biz mikroskobik ve görüntü analizi boru hattı gelişimi ile ilgili yardım için Ondřej Šebesta teşekkür ederiz. S . cerevisiae suşları için regenex laboratuvarına, ve japonet ve Hironori Niki ‘nin laboratuvarına s. multiflorum suşlar için teşekkür ederiz. Ppc1-88 strain Maya genetik kaynak merkezi Japonya tarafından sağlandı. Microskopi, Avrupa Bölgesel Kalkınma Fonu ve Çek Cumhuriyeti ‘nin devlet bütçesi tarafından finanse edilen Konfokal ve floresans mikroskopi laboratuvarı ‘nda yapılmıştır (Proje No. CZ. 1.05/4.1.00/16.0347 ve CZ. 2.16/3.1.00/21515).
12-bit monochromatic CCD camera Hamamatsu ORCA C4742-80-12AG | Hamamatsu | or equivalent | |
Adenine hemisulfate salt, ≥99% | Merck | A9126-25G | |
BODIPY 493/503 (4,4-Difluoro-1,3,5,7,8-Pentamethyl-4-Bora-3a,4a-Diaza-s-Indacene) | Thermo Fisher Scientific | D3922 | for neutral lipid staining |
D-(+) – Glucose, ≥99.5% | Merck | G7021 | |
Dextran, Cascade Blue, 10,000 MW, Anionic, Lysine Fixable | Thermo Fisher Scientific | D1976 | for negative staining of cells |
Dimethyl sulfoxide, ≥99.5% | Merck | D4540 | or higher purity, keep anhydrous on molecular sieves |
EMM broth without dextrose | Formedium | PMD0405 | medium may also be prepared from individual components |
Fiji/ImageJ software | NIH | or equivalent; for visual inspection of microscopic data | |
High precision cover glasses, 22×22 mm, No 1.5 | VWR | 630-2186 | use any # 1.5 cover glass |
Image Processing Toolbox for MATLAB, version 10.0 | Mathworks | ||
Lectin from Glycine max (soybean) | Merck | L1395 | for cell immobilization on slides |
MATLAB software, version 9.2 | Mathworks | ||
Microscope slide, 26 x 76 mm, 1 mm thickness | Knittel Glass | L762601.2 | use any microscope slide fitting your microscope stage, clean thoroughly before loading cells |
Olympus CellR microscope with automatic z-axis objective movement | Olympus | or equivalent | |
pentaband filter set | Semrock | F66-985 | brightfield, green and blue channels are sufficient |
Signal Processing Toolbox for MATLAB, version 7.4 | Mathworks | ||
SP supplements | Formedium | PSU0101 | |
standard office computer capable of running MATLAB | |||
Statistics and Machine Learning Toolbox for MATLAB, version 11.1 | Mathworks | ||
Universal peptone M66 for microbiology | Merck | 1070431000 | |
UPLSAPO 60XO objective | Olympus | or equivalent | |
Yeast extract | Formedium | YEA03 | |
Yeast nitrogen base without amino acids | Formedium | CYN0405 |