Summary

高产细胞外囊泡制剂的纯化远离病毒

Published: September 12, 2019
doi:

Summary

该协议通过结合EV沉淀、密度梯度超离和颗粒捕获,将细胞外囊泡(EV)与高效和屈服的病毒分离,从而简化工作流程和减少启动体积要求,导致可重复的制剂用于所有EV研究。

Abstract

当今细胞外囊泡 (EV) 研究领域的主要障碍之一是在病毒感染环境中实现纯化 EV 制剂的能力。提出的方法旨在将EV与病毒分离(即HIV-1),与传统的超离心方法相比,具有更高的效率和产量。我们的协议包含三个步骤:EV沉淀、密度梯度分离和粒子捕获。下游测定(即西斑点和PCR)可以直接在颗粒捕获后运行。此方法比其他隔离方法(即超离心)更有利,因为它允许使用最小起始体积。此外,它比需要多个超离心步骤的替代 EV 隔离方法更便于用户使用。然而,由于很难从粒子中洗去完整的EV,因此所呈现的方法在功能EV测定的范围上受到限制。此外,这种方法是针对严格的基于研究的设定,在商业上不可行。

Introduction

研究围绕细胞外囊泡 (EV), 特别是外显体, 一种 EV 范围 30-120 nm , 其特点是存在三个四边形标记 CD81, CD9 和 CD63, 在很大程度上已经形成的方法, 分离和净化感兴趣的囊泡。解剖多层面机制的能力受到阻碍,因为复杂的和耗时的技术,生成样本组成由异质的囊泡群产生,通过不同的途径产生,内容广泛,大小,和密度。虽然这是几乎所有EV研究的问题,但在在病毒感染环境中研究EV时,它特别重要,因为病毒和病毒样颗粒(VLP)的直径可以与感兴趣的囊泡相似。例如,人类免疫缺陷病毒类型1(HIV-1)的直径约为100纳米,与许多类型的EV大致相同。因此,我们设计了一种新的 EV 隔离工作流来解决这些问题。

目前EV隔离的黄金标准是超离心。该技术利用各种囊泡密度,允许囊泡分离离心与差异沉积的高密度粒子与低密度粒子在每个阶段1,2。需要几个低速离心步骤来去除完整的细胞(300-400 x g 10 分钟)、细胞碎片(±2,000 x g 10 分钟)和凋亡体/大囊泡(10 分钟=10,000 x g)。这些初始纯化后,高速超离心(100,000-2000,000 x g,1.5-2 小时)到沉积物EV。 执行洗涤步骤以进一步确保 EV 纯度,但是,这会导致隔离 EV 的数量减少,从而降低总产量34。此方法的效用进一步受到需要大量单元(约 1 x 108)和大样本体积 (> 100 mL) 以达到足够的结果的限制。

为了解决人们日益关注的问题,近年来,用亲水性聚合物沉淀囊泡已成为一种有用的技术。聚乙烯乙二醇 (PEG) 或其他相关的沉淀试剂允许用户通过使用选择的试剂孵育样品,然后以单个低速孵育样品,提取样品中的囊泡、病毒和蛋白质或蛋白质-RNA聚合体离心1,2,5。我们以前曾报道过,使用PEG或相关方法沉淀EV与传统超离心相比,可产生更高的产量6。此策略快速、简单,不需要额外的昂贵设备,易于扩展,并保留了 EV 结构。然而,由于这种方法的混杂性,所得样品含有多种产品,包括游自由蛋白、蛋白质复合物、一系列EV和病毒,因此需要进一步纯化才能获得所需的种群1。 278.

为了克服从各种沉淀方法中获得的EV的异质性,利用密度梯度超离心(DG)来更好地根据粒子的密度分离粒子。此方法使用密度梯度介质(如碘醇或蔗糖)进行逐步梯度,允许将 EV 与蛋白质、蛋白质复合体以及病毒或病毒样颗粒 (VLP) 分离。需要注意的是,虽然人们曾经认为DG允许更精确地分离EV亚群,但现在人们知道,各种囊泡的大小和密度可以重叠。例如,已知外体具有1.08-1.22 g/mL9的浮选密度,而从Golgi(COPI+或克拉林*)分离的囊泡的密度为1.05-1.12 g/mL,而来自内质的色囊密度(COPII=) 沉积物在 1.18-1.25 g/mL1,2,349.此外,如果希望将外索分数与含有病毒颗粒的馏分进行比较,这可能变得更加困难,具体取决于感兴趣的病毒的密度 – 除了HIV-1之外,还有其他病毒可能同时均衡密度作为外体正分数2。

最后,富集用于下游可视化和功能测定的EV制备对EV研究至关重要。使用EV富集纳米颗粒,特别是直径为700-800nm的多功能水凝胶颗粒,是实现集中式EV制备的关键步骤。它们具有高亲和力芳香诱饵,由多孔外筛壳封装,以促进选择性。本研究中使用的纳米粒子包括两种不同核心诱饵的显性制剂(反应红120 NT80;和Cibacron蓝色F3GA NT82),它们表明可以增加从各种试剂和生物流体中捕获EV(参见材料表)6,10,1112,13,14,15。这些颗粒从多种起始材料(包括碘化醇馏分、细胞培养上清液以及患者生物流体(如血浆、血清、脑脊髓液 (CSF)和尿液6、13)中轻松浓缩 EV.

本文介绍的方法结合多种技术,提高了现有EV纯化技术的效率;EV 沉淀、密度梯度超离心和颗粒捕获,可简化工作流程、降低样品要求并提高产量,以获得更均匀的 EV 样本,用于所有 EV 研究。该方法在病毒感染期间对EV及其含量的调查特别有用,因为它包括0.22 μm过滤步骤,以排除大、不需要的囊泡和VLP,并根据密度分离总EV人群,以有效将 EV 与病毒隔离开来。

Protocol

1. 细胞外囊泡(EV)的过滤和沉淀 为了从受感染或转染的细胞(即细胞系和/或原细胞)制备培养上清液,在37°C下培养约10 mL的晚日志细胞,在适当的培养培养基(即,RPMI或DMEM,胎儿牛)中培养5天,培养5%的CO2 血清 [FBS])。注:所有培养介质试剂应不含EV,并可购买(见材料表),或由100,000 x g的血清超前离心在内部制备,90分钟。该协议已经?…

Representative Results

PEG 降水增加 EV 产量与传统超离心相比,我们的 EV 隔离组合方法在 EV 回收方面的效率要高得多,所需起始材料体积减少 90%就可见一斑。超中光是EV隔离的现行黄金标准,需要大约100 mL的培养上清液才能为下游检测提供充足的EV准备,而我们的新型协议只需要10 mL。通过使用 PEG EV 沉淀试剂,通过纳米跟踪分析 (NTA) 测量,可显著提高 EV 产量,从而实现这种…

Discussion

概述的方法允许提高EV产量,并使用联合方法分离病毒从EV中分离出来。相对大量的起始材料(即细胞上清液)可以通过沉淀、DG分离和纳米颗粒富集在EV分离前进行过滤,最终体积为±30 μL,可立即在各种下游测定。纳米粒子富集的使用至关重要,因为与传统超离心相比,这些EV富集纳米粒子已被证明能更有效地捕获囊泡,产生大于或等于1mL培养的囊泡量上清比10 mL的超离心培养上清15…

Divulgations

The authors have nothing to disclose.

Acknowledgements

我们要感谢卡山奇实验室的所有成员,特别是格温·考克斯。这项工作得到了国家卫生研究院 (NIH) 赠款 (AI078859、 AI074410、 AI127351-01、 AI043894 和 NS099029 到 F.K.) 的支持。

Materials

CEM CD4+ Cells NIH AIDS Reagent Program 117 CEM
DPBS without Ca and Mg (1X) Quality Biological 114-057-101
ExoMAX Opti-Enhancer Systems Biosciences EXOMAX24A-1 PEG precipitation reagent
Exosome-Depleted FBS Thermo Fisher Scientific A2720801
Fetal Bovine Serum Peak Serum PS-FB3 Serum
HIV-1 infected U937 Cells NIH AIDS Reagent Program 165 U1
Nalgene Syringe Filter 0.2 µm SFCA Thermo Scientific 723-2520
Nanotrap (NT80) Ceres Nanosciences CN1030 Reactive Red 120 core
Nanotrap (NT82) Ceres Nanosciences CN2010 Cibacron Blue F3GA core
Optima XE-980 Ultracentrifuge Beckman Coulter A94471
OptiPrep Density Gradient Medium Sigma-Aldrich D1556-250mL Iodixanol
SW 41 Ti Swinging-Bucket Rotor Beckman Coulter 331362
Ultra-Clear Tube, 14x89mm Beckman Coulter 344059

References

  1. Taylor, D. D., Shah, S. Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes. Methods (San Diego, Calif). 87, 3-10 (2015).
  2. Konoshenko, M. Y., Lekchnov, E. A., Vlassov, A. V., Laktionov, P. P. Isolation of Extracellular Vesicles: General Methodologies and Latest Trends. BioMed Research International. 2018, 8545347 (2018).
  3. Momen-Heravi, F., et al. Current methods for the isolation of extracellular vesicles. Biological Chemistry. 394 (10), 1253-1262 (2013).
  4. Théry, C., Amigorena, S., Raposo, G., Clayton, A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Current Protocols in Cell Biology. , (2006).
  5. Boriachek, K., et al. Biological Functions and Current Advances in Isolation and Detection Strategies for Exosome Nanovesicles. Small (Weinheim an Der Bergstrasse, Germany). 14 (6), (2018).
  6. DeMarino, C., et al. Antiretroviral Drugs Alter the Content of Extracellular Vesicles from HIV-1-Infected Cells. Scientific Reports. 8 (1), 7653 (2018).
  7. Van Deun, J., et al. The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. Journal of Extracellular Vesicles. 3, (2014).
  8. Lobb, R. J., et al. Optimized exosome isolation protocol for cell culture supernatant and human plasma. Journal of Extracellular Vesicles. 4, 27031 (2015).
  9. Raposo, G., et al. B lymphocytes secrete antigen-presenting vesicles. The Journal of Experimental Medicine. 183 (3), 1161-1172 (1996).
  10. Sampey, G. C., et al. Exosomes from HIV-1-infected Cells Stimulate Production of Pro-inflammatory Cytokines through Trans-activating Response (TAR) RNA. The Journal of Biological Chemistry. 291 (3), 1251-1266 (2016).
  11. Ahsan, N. A., et al. Presence of Viral RNA and Proteins in Exosomes from Cellular Clones Resistant to Rift Valley Fever Virus Infection. Frontiers in Microbiology. 7, 139 (2016).
  12. Barclay, R. A., et al. Exosomes from uninfected cells activate transcription of latent HIV-1. The Journal of Biological Chemistry. 292 (28), 11682-11701 (2017).
  13. Pleet, M. L., et al. Ebola VP40 in Exosomes Can Cause Immune Cell Dysfunction. Frontiers in Microbiology. 7, 1765 (2016).
  14. Pleet, M. L., et al. Ebola Virus VP40 Modulates Cell Cycle and Biogenesis of Extracellular Vesicles. The Journal of Infectious Diseases. , (2018).
  15. Anderson, M. R., et al. Viral antigens detectable in CSF exosomes from patients with retrovirus associated neurologic disease: functional role of exosomes. Clinical and Translational Medicine. 7 (1), 24 (2018).
  16. Vlassov, A. V., Magdaleno, S., Setterquist, R., Conrad, R. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochimica Et Biophysica Acta. 1820 (7), 940-948 (2012).
  17. Théry, C., Zitvogel, L., Amigorena, S. Exosomes: composition, biogenesis and function. Nature Reviews. Immunology. 2 (8), 569-579 (2002).
  18. Schwab, A., et al. Extracellular vesicles from infected cells: potential for direct pathogenesis. Frontiers in Microbiology. 6, 1132 (2015).
  19. Narayanan, A., et al. Exosomes derived from HIV-1-infected cells contain trans-activation response element RNA. The Journal of Biological Chemistry. 288 (27), 20014-20033 (2013).
  20. Sami Saribas, A., Cicalese, S., Ahooyi, T. M., Khalili, K., Amini, S., Sariyer, I. K. HIV-1 Nef is released in extracellular vesicles derived from astrocytes: evidence for Nef-mediated neurotoxicity. Cell Death & Disease. 8 (1), e2542 (2017).
  21. Yang, L., et al. Exosomal miR-9 Released from HIV Tat Stimulated Astrocytes Mediates Microglial Migration. Journal of Neuroimmune Pharmacology: The Official Journal of the Society on NeuroImmune Pharmacology. 13 (3), 330-344 (2018).
  22. Arakelyan, A., Fitzgerald, W., Zicari, S., Vanpouille, C., Margolis, L. Extracellular Vesicles Carry HIV Env and Facilitate Hiv Infection of Human Lymphoid Tissue. Scientific Reports. 7 (1), 1695 (2017).
  23. Jaworski, E., et al. Human T-lymphotropic virus type 1-infected cells secrete exosomes that contain Tax protein. The Journal of Biological Chemistry. 289 (32), 22284-22305 (2014).
  24. Heinemann, M. L., et al. Benchtop isolation and characterization of functional exosomes by sequential filtration. Journal of Chromatography. A. 1371, 125-135 (2014).
  25. McNamara, R. P., et al. Large-scale, cross-flow based isolation of highly pure and endocytosis-competent extracellular vesicles. Journal of Extracellular Vesicles. 7 (1), 1541396 (2018).
  26. Heinemann, M. L., Vykoukal, J. Sequential Filtration: A Gentle Method for the Isolation of Functional Extracellular Vesicles. Methods in Molecular Biology. 1660, 33-41 (2017).
  27. Busatto, S., et al. Tangential Flow Filtration for Highly Efficient Concentration of Extracellular Vesicles from Large Volumes of Fluid. Cells. 7 (12), (2018).
  28. Andriolo, G., et al. Exosomes From Human Cardiac Progenitor Cells for Therapeutic Applications: Development of a GMP-Grade Manufacturing Method. Frontiers in Physiology. 9, 1169 (2018).
  29. Pleet, M. L., et al. Autophagy, EVs, and Infections: A Perfect Question for a Perfect Time. Frontiers in Cellular and Infection Microbiology. 8, 362 (2018).
  30. Richards, A. L., Jackson, W. T. Intracellular Vesicle Acidification Promotes Maturation of Infectious Poliovirus Particles. PLoS Pathogens. 8 (11), (2012).
  31. Taylor, M. P., Kirkegaard, K. Modification of Cellular Autophagy Protein LC3 by Poliovirus. Journal of Virology. 81 (22), 12543-12553 (2007).
  32. Jackson, W. T., et al. Subversion of cellular autophagosomal machinery by RNA viruses. PLoS biology. 3 (5), e156 (2005).
  33. Suhy, D. A., Giddings, T. H., Kirkegaard, K. Remodeling the Endoplasmic Reticulum by Poliovirus Infection and by Individual Viral Proteins: an Autophagy-Like Origin for Virus-Induced Vesicles. Journal of Virology. 74 (19), 8953-8965 (2000).

Play Video

Citer Cet Article
DeMarino, C., Barclay, R. A., Pleet, M. L., Pinto, D. O., Branscome, H., Paul, S., Lepene, B., El-Hage, N., Kashanchi, F. Purification of High Yield Extracellular Vesicle Preparations Away from Virus. J. Vis. Exp. (151), e59876, doi:10.3791/59876 (2019).

View Video