Décrit ici est une méthode simple pour la purification d’un produit génique dans Streptococcus mutans. Cette technique peut être avantageuse dans la purification des protéines, en particulier les protéines membranaires et les protéines de masse moléculaire élevée, et peut être utilisée avec diverses autres espèces bactériennes.
L’élucidation de la fonction d’un gène implique généralement la comparaison des traits phénotypiques des souches et souches de type sauvage dans lesquelles le gène d’intérêt a été perturbé. La perte de fonction à la suite d’une perturbation génétique est ensuite rétablie par l’ajout exogène du produit du gène perturbé. Cela aide à déterminer la fonction du gène. Une méthode précédemment décrite consiste à générer une souche de Streptococcus mutans perturbée par le gène gtfC. Ici, une méthode peu exigeante est décrite pour purifier le produit de gène de gtfC de la souche nouvellement produite de S. mutans suivant la perturbation de gène. Il s’agit de l’ajout d’une séquence de codage de polyhistidine à l’extrémité 3 du gène d’intérêt, ce qui permet une simple purification du produit génique à l’aide d’une chromatographie d’affinité métallique immobilisée. Aucune réaction enzymatique autre que PCR n’est requise pour la modification génétique de cette méthode. La restauration du produit génique par ajout exogène après la rupture des gènes est une méthode efficace pour déterminer la fonction génique, qui peut également être adaptée à différentes espèces.
L’analyse de la fonction d’un gène implique généralement la comparaison des traits phénotypiques des souches de type sauvage aux souches dans lesquelles le gène d’intérêt a été perturbé. Une fois que la souche perturbée par le gène est produite, l’ajout exogène du produit génique permet une restauration fonctionnelle.
La méthode la plus courante pour obtenir les produits géniques purifiés requis pour les essais de restauration ultérieures est en effectuant l’expression hétérologue dans Escherichia coli1. Cependant, l’expression des protéines membranaires ou des protéines de masse moléculaire élevée est souvent difficile à l’aide de ce système1. Dans ces cas, la protéine cible est habituellement isolée des cellules qui synthétisent la protéine par une série complexe d’étapes, qui peuvent mener à la perte du produit génique. Pour surmonter ces problèmes, une procédure simple a été développée pour la purification des produits géniques à la suite d’une méthode de perturbation génétique2, pcR à base de méthode d’épissage de l’ADN3 (désigné en deux étapes de fusion PCR), et l’électroporation pour la génétique transformation dans Streptococcus mutans. L’ajout d’une étiquette de polyhistidine (His-tag) au c-terminus du produit génique facilite sa purification par chromatographie d’affinité métallique immobilisée (IMAC).
Pour isoler la souche His-tag-expressing, l’ADN génomique entier du gène d’intérêt (dans cette souche son-étiquette-exprimant gène-perturbé) est remplacé par un gène de marqueur antibiorésistant. La procédure pour générer la souche His-tag-exprimant est presque identique à celle pour générer une souche gène-perturbée comme décrit précédemment4,5. Par conséquent, les méthodes de perturbation génétique et d’isolement des produits géniques devraient être effectuées en série d’expériences pour l’analyse fonctionnelle.
Dans le présent travail, une séquence de codage de polyhistidine est attachée à l’extrémité 3 du gène gtfC (GenBank locus tag SMU 1005), codant la glucosyltransferase-SI (GTF-SI) en S. mutans6. Ensuite, des études d’expression chez une espèce streptococcique ont été réalisées. Il est difficile d’atteindre l’expression hétérologue de la gtfC par E. coli, probablement en raison de la masse moléculaire élevée de GTF-SI. Cette souche est nommée S. mutans His-gtfC. Une illustration schématique représentant l’organisation de la cassette de gène de résistance à la gtfC et à la spectinomycine (spcr)7 loci dans le type sauvage S. mutans (S. mutans WT) et ses dérivés est montrée dans Figure 1. Le GTF-SI est une protéine sécrétrice qui contribue au développement du biofilm dentaire cariogénique6. Sous la présence du saccharose, un biofilm adhérent est observé sur une surface de verre lisse dans la souche WT S. mutans, mais pas dans la souche S. mutans gtfC-perturbée (S. mutans ‘gtfC)2,5 . La formation de biofilms est restaurée dans S. mutans –gtfC après l’ajout exogène du GTF-SI recombinant. La souche, S. mutans His-gtfC, est ensuite utilisé pour produire le GTF-SI recombinant.
La conception des amorces est l’étape la plus critique du protocole. Les séquences des amorces gtfC-reverse et spcr-avantont été automatiquement déterminées en fonction des séquences de la région d’extrémité de 3 degrés de gtfC et de la région de fin de 5 degrés de spcr. Chaque amorce comprend 24 bases complémentaires qui codent un lien GS et une séquence de codage His-tag dans leurs régions de 5′. La perturbation des séquences réglementaires ind…
The authors have nothing to disclose.
Ce travail a été soutenu par la Société japonaise pour la promotion de la science (JSPS) (numéros de subvention 16K15860 et 19K10471 à T. M., 17K12032 à M. I., et 18K09926 à N. H.) et la SECOM Science and Technology Foundation (SECOM) (numéro de subvention 2018.09.10 No 1).
Agarose | Nippon Genetics | NE-AG02 | For agarose gel electrophoresis |
Anaeropack | Mitsubishi Gas Chemical | A-03 | Anaerobic culture system |
Anti-His-Tag monoclonal antibody | MBL | D291-7 | HRP-conjugated |
BCA protein assay kit | Thermo Fisher Scientific | 23227 | Measurement of protein concentration |
Brain heart infusion broth | Becton, Dickinson | 237500 | Bacterial culture medium |
CBB R-250 | Wako | 031-17922 | For biofilm staining |
Centrifugal ultrafiltration unit | Sartorius | VS2032 | Buffer replacement and protein concentration |
Centrifuge | Kubota | 7780II | |
Chromatographic column | Bio-Rad | 7321010 | For IMAC |
Dialysis membrane clamp | Fisher brand | 21-153-100 | |
Dialysis tubing | As One | 2-316-06 | |
DNA polymerase | Takara | R045A | High-fidelity DNA polymerase |
DNA sequencing | Eurofins Genomics | ||
ECL substrate | Bio-Rad | 170-5060 | For western blotting |
EDTA (0.5 M pH 8.0) | Wako | 311-90075 | Tris-EDTA buffer preparation |
Electroporation cuvette | Bio-Rad | 1652086 | 0.2 cm gap |
Electroporator | Bio-Rad | 1652100 | |
EtBr solution | Nippon Gene | 315-90051 | For agarose gel electrophoresis |
Gel band cutter | Nippon Genetics | FG-830 | |
Gel extraction kit | Nippon Genetics | FG-91202 | DNA extraction from agarose gel |
Imager | GE Healthcare | 29083461 | For SDS-PAGE and western blotting |
Imidazole | Wako | 095-00015 | Binding buffer and elution buffer preparation |
Incubator | Nippon Medical & Chemical Instruments | EZ-022 | Temperature setting: 4 °C |
Incubator | Nippon Medical & Chemical Instruments | LH-100-RDS | Temperature setting: 37 °C |
Membrane filter | Merck Millipore | JGWP04700 | 0.2 µm diameter |
Microcentrifuge | Kubota | 3740 | |
NaCl | Wako | 191-01665 | Preparation of binding buffer and elution buffer |
NaH2PO4·2H2O | Wako | 192-02815 | Preparation of binding buffer and elution buffer |
NaOH | Wako | 198-13765 | Preparation of binding buffer and elution buffer |
(NH4)2SO4 | Wako | 015-06737 | Ammonium sulfate precipitation |
Ni-charged resin | Bio-Rad | 1560133 | For IMAC |
PCR primers | Eurofins Genomics | Custom-ordered | |
Protein standard | Bio-Rad | 161-0381 | For SDS-PAGE and western blotting |
Solvent filtration apparatus | As One | FH-1G | |
Spectinomycin | Wako | 195-11531 | Antibiotics; use at 100 μg/mL |
Sterile syringe filter | Merckmillipore | SLGV004SL | 0.22 µm diameter |
Streptococus mutans ΔgtfC | Stock strain in the lab. | gtfC replaced with spcr | |
Streptococus mutans UA159 | Stock strain in the lab. | S. mutans ATCC 700610, Wild-type strain | |
Sucrose | Wako | 196-00015 | For biofilm development |
TAE (50 × ) | Nippon Gene | 313-90035 | For agarose gel electrophoresis |
Thermal cycler | Bio-Rad | PTC-200 | |
Tris-HCl (1 M, pH 8.0) | Wako | 314-90065 | Tris-EDTA buffer preparation |