Een nauwkeurige schatting van de Leaf Area index (LAI) is cruciaal voor veel modellen van materiaal-en energiestromen in planten ecosystemen en tussen een ecosysteem en de atmosferische grenslaag. Daarom waren drie methoden (strooisel vallen, naald techniek en PCA) voor het nemen van precieze LAI-metingen in het gepresenteerde protocol.
Nauwkeurige schattingen van de Leaf Area index (LAI), gedefinieerd als de helft van het totale bladoppervlak per eenheid horizontaal grondoppervlak, zijn van cruciaal belang voor het beschrijven van de vegetatie structuur op het gebied van ecologie, bosbouw en landbouw. Daarom werden de procedures van drie commercieel gebruikte methodes (strooisel vallen, naald techniek en een plantencanopy Analyzer) stap voor stap gepresenteerd voor het uitvoeren van LAI-schatting. Er werden specifieke methodologische benaderingen vergeleken en hun huidige voordelen, controverses, uitdagingen en toekomstige perspectieven werden in dit protocol besproken. Strooisel vallen worden meestal als referentieniveau beschouwd. Zowel de naald techniek als de plant Canopy Analyzer (bijvoorbeeld LAI-2000) onderschatten vaak de LAI-waarden in vergelijking met de referentie. De naald techniek is gemakkelijk te gebruiken in bladverliedige stands, waarbij het strooisel elk jaar volledig ontbindt (bijv. eiken-en beuken statieven). Kalibratie op basis van strooisel vallen of directe destructieve methoden is echter noodzakelijk. De plant Canopy Analyzer is een veelgebruikt apparaat voor het uitvoeren van LAI-schatting in ecologie, bosbouw en landbouw, maar is onderhevig aan mogelijke fouten als gevolg van loof klontering en de bijdrage van houtachtige elementen in het gezichtsveld (FOV) van de sensor. Het elimineren van deze potentiële foutbronnen werd besproken. De plant Canopy Analyzer is een zeer geschikt apparaat voor het uitvoeren van LAI-schattingen op het hoge ruimtelijke niveau, het observeren van een seizoensgebonden LAI-dynamiek en voor lange termijn monitoring van LAI.
Lai, gedefinieerd als de helft van het totale bladoppervlak per eenheid horizontaal grondoppervlak1, is een belangrijke variabele die wordt gebruikt in vele bio-geopfysische en chemische uitwisselings modellen die gericht zijn op koolstof-en water fluxen2,3, 4. Lai is direct evenredig aan het actieve oppervlak van bladeren waar het de primaire productie (fotosynthese), transpiratie, energie-uitwisseling en andere fysiologische kenmerken die verbonden zijn met een reeks van ecosysteem processen in plant Gemeenschappen5.
Talrijke benaderingen en instrumenten voor het uitvoeren van Lai schatting zijn ontwikkeld, en ze zijn momenteel beschikbaar op de markt6,7,8,9. Grond methoden voor het uitvoeren van LAI-schatting kunnen worden onderverdeeld in twee hoofdcategorieën: (i) direct, en (II) indirecte methoden10,11,12. De eerste groep omvat methoden die het blad gebied direct meten, terwijl de indirecte methoden LAI afleiden van metingen van gemakkelijker meetbare parameters, met behulp van radiatieve overdrachts theorie (in termen van tijd, arbeidsintensiteit en technologie)13 ,14.
Dit protocol behandelt het praktische gebruik van strooisel vallen en de naald techniek, als niet-destructieve semi-directe methoden10; en de optische apparaat installatie Canopy Analyzer als een indirecte methode6,7 voor het uitvoeren van Lai schatting op een gekozen monster uit gematigde bladverliezer bos stands in Midden-Europa (Zie de structurele en dendrometrische kenmerken in Bijlage A en aanhangsel B).
In bladverliedige bossen en gewassen is het mogelijk om niet-destructieve semi-directe LAI-schatting uit te voeren met strooisel vallen11 die onder de Canopy Layer15worden gedistribueerd. Strooisel vallen bieden precieze LAI-waarden voor bladverliedige soorten waarin LAI in het groeiseizoen een plateau bereikt. Echter, voor soorten die bladeren kunnen vervangen tijdens het groeiseizoen, zoals populier, overschattingen de methode LAI11. Bij deze methode wordt ervan uitgegaan dat de inhoud van de traps de gemiddelde hoeveelheid bladeren vertegenwoordigt die tijdens een periode van de herfst in de stand16vallen, vooral tijdens de najaarsmaanden. Vallen worden geopend dozen of netten (Figuur 1) met een vooraf bepaalde voldoende grootte (minimum 0,18 m2, maar bij voorkeur meer dan 0,25 m2)10,17, laterale zijkanten voorkomen dat de wind van blazen bladeren in/uit de vallen en met een geperforeerde bodem die de ontbinding van de bladeren vermijdt; die zich onder de Canopy laag van de onderzochte stand bevinden, echter boven het grondoppervlak11. De verdeling van de vallen kan ofwel willekeurig18 of systematisch in transecten19 of een regelmatige afstand raster20. Het aantal en de verdeling van vallen zijn een cruciale methodologische stap voor het uitvoeren van een nauwkeurige LAI-schatting die de unieke stand-structuur, ruimtelijke homogeniteit, verwachte windsnelheid en-richting weergeeft, vooral in het geval van sparse stands (of steegjes en en de werkcapaciteit voor het evalueren van gegevens. De precisie van Lai-schatting neemt toe met de stijgende frequentie van vallen binnen bestudeerde stands11,21 (Zie Figuur 2).
De aanbevolen frequentie van het verzamelen van monsters van de strooisel-val van elke val is ten minste maandelijks10 en zelfs tweemaal per week in perioden van zware val, die kunnen samenvallen met zware regenval. Het is noodzakelijk om afbraak van het strooisel in de vallen en het uitlogen van voedingsstoffen uit het materiaal tijdens regen episoden in het geval van chemische analyse te voorkomen. Na het verzamelen van bladeren in een veld wordt een gemengd submonster gebruikt voor het schatten van het specifieke blad gebied (SLA, cm2 g-1)22, gedefinieerd als het verse geprojecteerde gebied van bladeren tot de droge massa gewichtsverhouding. De rest van het verzamelde strooisel wordt tot een constant gewicht gedroogd en gebruikt voor de berekening van de droge massa van het nestje als g cm-2 in het laboratorium. Blad droge massa op elke afhaaldatum wordt omgezet in het blad gebied door de verzamelde biomassa te vermenigvuldigen met sla of blad droge massa per gebied (LMA, g cm-2) als de inverse parameter voor sla23,24. Een nieuw geprojecteerd gebied van bepaalde bladeren kan worden bepaald met behulp van een planimetrische benadering. De planimetrische methode is gebaseerd op de afhankelijkheid tussen het gebied van een specifiek blad en het gebied bedekt door het blad in het horizontale oppervlak. Het blad is horizontaal bevestigd aan het Scan scherm, en het gemiddelde wordt gemeten met behulp van een Leaf Area meter. Vervolgens wordt het gebied berekend. Veel bladoppervlak meters op basis van verschillende meetprincipes zijn beschikbaar op de markt. Sommigen van hen omvatten, bijvoorbeeld, de LI-3000C Portable Leaf Area meter, die gebruik maakt van de orthogonale projectie methode, en de LI-3100C gebied meter, die meet blad gemiddelde met behulp van een fluorescerende lichtbron en een semi-uitgevoerde scan camera. Het volgende apparaat, de CI-202 Portable Laser Leaf Area meter, codeert een blad lengte met behulp van een code lezer. Naast hen, de AM350 en BSLM101 Portable Leaf gebied meters worden ook vaak gebruikt voor het uitvoeren van nauwkeurige blad gebied schatting.
Bovendien zijn Leaf-gebied meters gebaseerd op systemen die video analyseren. Deze blad gebied meters bestaan uit een videocamera, een digitaliserings kader, een scherm en een PC, inclusief geschikte software voor het maken van de data-analyse zoals WD3 WinDIAS Leaf image analysesysteem11. Op dit moment kunnen conventionele scanners die zijn aangesloten op een PC worden gebruikt voor een schatting van het Leaf-gebied. Daarna wordt het blad gebied berekend als een veelvoud van het aantal zwarte pixels en de grootte ervan is afhankelijk van de geselecteerde resolutie (dots per inch-dpi), of het blad gebied wordt gemeten door middel van specifieke software, bijvoorbeeld WinFOLIA. Ten slotte wordt de totale droge massa van de bladeren die binnen een bekend grondoppervlak worden opgevangen, omgezet in de LAI door vermenigvuldiging met SLA en een krimp coëfficiënt25 die de veranderingen in het gebied van verse en gedroogde bladeren weerspiegelt. Krimp is afhankelijk van de boomsoort, het watergehalte en de blad zachtheid. De krimp van bladeren in lengte en breedte (wat het geprojecteerde gebied beïnvloedt) is meestal tot 10%26, bijvoorbeeld varieert van 2,6 tot 6,8% voor eiken27. Het sorteren van bladeren op soorten voor weging en het vaststellen van de specifieke bladoppervlak verhouding is noodzakelijk om de bijdrage van elke soort aan de totale LAI28te bepalen.
Lai bepaling door de naald techniek is een goedkope methode afgeleid van de hellende punt Quadrat methode29,30,31,32. In bladverliedige stands is het een alternatief voor het uitvoeren van LAI-schatting zonder gebruik te maken van traps10 op basis van de veronderstelling dat het totale bladnummer en hun gebied in een boom gelijk zijn aan wat wordt verzameld op het bodemoppervlak na een volledig blad-Fall20 . Een dunne scherpe naald wordt verticaal doorboord in het nestje liggend op de grond direct na het blad-Fall10. Na de volledige Leaf-Fall, de bladeren worden verzameld van de grond op een naald van een verticale sonde, zijn gerelateerd aan het contactnummer en gelijk aan de werkelijke LAI waarde. Een intensieve bemonstering (100-300 bemonsteringspunten per bestudeerde stand per veld sonde) door de naald techniek is nodig om een gemiddeld contactnummer te kwantificeren en de Lai-waarde correct af te leiden10,20,33.
Deplant Canopy Analyzer(bijvoorbeeld LAI-2000 of LAI-2200 PCA) is een algemeen gebruikt draagbaar instrument voor het uitvoeren van een indirecte LAI schatting door het nemen van een meting van de lichttransmissie door de luifel7binnen het gefilterde blauwe gedeelte van het lichtspectrum (320-490 nm)34,35om de bijdrage van het licht dat door de bladeren is gepasseerd te minimaliseren, werd verstrooid door de luifel en passeert het loof7,34. In het blauwe deel van het lichtspectrum wordt het maximale contrast tussen het blad en de lucht bereikt en wordt het loof zwart tegen de hemel34. Daarom is het gebaseerd op de Canopy gap breuk analyse7. Het instrument is op grote schaal gebruikt voor het maken van eco-fysiologische studies in plantengemeenschappen zoals gewassen36Graslanden37, naald stands8, en bladverliedige stands38. De plant Canopy Analyzer maakt gebruik van een fisheye optische sensor met een FOV van 148 °35om een halfronde afbeelding van de luifel op silicium detectoren te projecteren om ze in vijf concentrische ringen te rangschikken39met centrale Zenith-hoeken van 7 °, 23 °, 38 °, 53 ° en 68 °9,40,41. Vijf weergave-caps (d.w.z.,270 °, 180 °, 90 °, 45 ° en 10 °) kunnen worden gebruikt om de Azimut weergave van de optische sensor te beperken27om arcering door obstakels in een open gebied te voorkomen (voor de hierboven genoemde lezing) of de operator in de GEZICHTShoek van de sensor tijdens LAI-schatting kan de FOV-sensor worden aangepast aan een open gebied voor bovenoverkap metingen. Metingen met behulp van de plant Canopy Analyzer worden boven (of in een voldoende uitgebreide open ruimte) en onder de bestudeerde luifel7. Dezelfde View caps moeten worden gebruikt voor zowel boven als onder de lezingen om te voorkomen dat vooroordelen van Gap breuk schatting34. De LAI-2000 PCA produceert een effectieve Leaf Area index (LAIe) zoals geïntroduceerd door Chen et al.42, of beter gezegd een effectieve plant area index (PAIe) als houtachtige elementen zijn opgenomen in de sensor lees waarde. In bladverliedige stands met platte bladeren is de LAIe hetzelfde als de Hemi-oppervlakte LAI. In het geval van groenblijvende bosopstanden is de Laie noodzakelijk om het klonteren-effect op het schiet niveau te corrigeren (spar, ster)43, de klonteren index op schalen groter dan de shoot (ΩE)44en de bijdrage van houtachtige elementen, met inbegrip van stengels en takken (d.w.z.,oppervlakte-verhouding van hout tot totaal),45die een systematische LAI onderschatting veroorzaken20. De klonteren index op een hogere ruimtelijke schaal dan de shoot of Leaf kan worden gekwantificeerd als een schijnbare klonteren index (ACF), die kan worden geschat met behulp van de plant Canopy Analyzer wanneer meer beperkende weergave caps worden gebruikt27. Zoals deze auteurs verklaren dat dit ACF wordt afgeleid uit een ratio van LAI-waarden, berekend op basis van doorgeleiding door verschillende procedures voor homogene en niet-homogene luifels volgens lang46, veronderstellen we dat deze klonteren-index nogal luifel homogeniteit beschrijft. Naast de ACF-berekening, nieuwe diffusor doppen die een uitgebreidere toepassing van LAI-2200 PCA mogelijk maken met betrekking tot de weersomstandigheden, een gebruikersmenu in plaats van fct-codes, en de mogelijkheid om veel meer metingen per bestands sessie te doen, behoren tot de belangrijkste technologische upgrades in vergelijking met de voormalige LAI-2000 PCA34,47. Metingen en daaropvolgende interne software berekeningen zijn gebaseerd op vier veronderstellingen: (1) lichtblokkerende plant elementen, waaronder bladeren, takken en stengels, worden willekeurig verdeeld in de luifel, (2) loof is een optisch zwart lichaam dat alle licht dat het ontvangt, (3) alle plant elementen zijn dezelfde projectie naar het horizontale grondoppervlak als een eenvoudige geometrische convexe vorm, (4) planten elementen zijn klein in vergelijking met het gebied bedekt door elke ring11.
Strooisel vallen worden beschouwd als een van de meest accurate methoden voor het uitvoeren van Lai schatting8, maar ze zijn arbeidsintensieve en tijdrovend dan de indirecte methoden35,64 die in dit protocol zijn opgenomen. Binnen de hele LAI schattings procedure met behulp van strooisel vallen is een precieze schatting van de SLA het meest kritieke punt10 , omdat de sla kan variëren met plantensoorten<sup class="x…
The authors have nothing to disclose.
Wij zijn dank verschuldigd aan de redactieraad van het tijdschrift voor bosbouw onderzoek om ons te stimuleren en toe te staan om de representatieve resultaten van dit protocol uit het aldaar gepubliceerde artikel te gebruiken. We bedanken ook twee anonieme reviewers voor hun waardevolle opmerkingen, die het manuscript aanzienlijk hebben verbeterd. Het onderzoek werd gefinancierd door het ministerie van landbouw van de Tsjechische Republiek, institutionele steun MZE-RO0118 en het Nationaal Agentschap voor landbouwonderzoek (Projectnr. QK1810126).
Area Meter | LI-COR Biosciences Inc., NE, USA | LI-3100C | https://www.licor.com/env/products/leaf_area/LI-3100C/ |
Computer Image Analysis System | Regent Instruments Inc., CA | WinFOLIA | http://www.regentinstruments.com/assets/images_winfolia2/WinFOLIA2018-s.pdf |
File Viewer | LI-COR Biosciences Inc., NE, USA | FV2200C Software | https://www.licor.com/env/products/leaf_area/LAI-2200C/software.html |
Laboratory oven | Amerex Instruments Inc., CA, USA | CV150 | https://www.labcompare.com/4-Drying-Ovens/2887-IncuMax-Convection-Oven-250L/?pda=4|2887_2_0||| |
Leaf Image Analysis System | Delta-T Devices, UK | WD3 WinDIAS | https://www.delta-t.co.uk/product/wd3/ |
Litter traps | Any | NA | See Fig. 2 |
Needle | Any | NA | Maximum diameter of 2 mm |
Plant Canopy Analyser | LI-COR Biosciences Inc., NE, USA | LAI-2000 PCA | LAI-2200 PCA or LAI-2200C as improved versions of LAI-2000 PCA can be used, see: https://www.licor.com/env/products/leaf_area/LAI-2200C/ |
Portable Laser Leaf Area Meter | CID Bio-Science, WA, USA | CI-202 | https://cid-inc.com/plant-science-tools/leaf-area-measurement/ci-202-portable-laser-leaf-area-meter/ |
Portable Leaf Area Meter | ADC, BioScientic Ltd., UK | AM350 | https://www.adc.co.uk/products/am350-portable-leaf-area-meter/ |
Portable Leaf Area Meter | Bionics Scientific Technogies (P). Ltd., India | BSLM101 | http://www.bionicsscientific.com/measuring-meters/leaf-area-index-meter.html |
Portable Leaf Area Meter | LI-COR Biosciences Inc., NE, USA | LI-3000C | https://www.licor.com/env/products/leaf_area/LI-3000C/ |