Summary

ハイスループットプリマゼプロファイリングを用いたDNAプリマゼによるDNA配列認識

Published: October 08, 2019
doi:

Summary

タンパク質結合マイクロアレイ(PBM)実験は、生化学的アッセイと組み合わせることで、テンプレートDNA上でRNAプライマーを合成する酵素であるDNAプリマーゼの結合および触媒特性を連結します。この方法は、ハイスループットプリマゼプロファイリング(HTPP)として指定され、様々な酵素のDNA結合パターンを明らかにするために使用することができる。

Abstract

DNAプリマーゼは、DNA複製中にDNAポリメラーゼによって遅れ鎖上の岡崎断片のDNA合成を開始する短いRNAプライマーを合成します。DNAへの原核生物DnaG様プリマの結合は、特定のトリヌクレオチド認識配列で起こる。岡崎断片の形成において極めて重要な一歩です。DNAプリマゼのDNA認識配列を決定するために使用される従来の生化学的ツールは、限られた情報のみを提供します。ハイスループットマイクロアレイベースの結合アッセイと連続した生化学的分析を用いて、1)特定の結合コンテキスト(認識部位のフランク配列)がDNAプリマゼの結合強度に影響を及ぼすことが示された。DNA、および2)DNAへのプリマゼのより強い結合は、より長いRNAプライマーをもたらし、酵素のより高い処理性を示す。この方法は、PBMとプリマーゼ活性アッセイを組み合わせ、ハイスループットプリマーゼプロファイリング(HTPP)として指定されており、前例のない時間とスケーラビリティでDNAプリマーゼによる特異的配列認識の特性評価を可能にします。

Introduction

HTPPは、生化学的解析(図1)と組み合わせたDNA結合マイクロアレイ技術を利用して、DNAプリマゼの酵素活性に影響を与えるDNAテンプレートの特定の特徴を統計的に同定します。したがって、HTPPは、分野における知識の飛躍を促進する技術プラットフォームを提供します。霊長認識部位を決定するために使用される古典的なツールは、大量のデータを生成する機能を持っていませんが、HTPPはそうします。

PBMは、DNA1、2への転写因子の結合の好みを決定するために日常的に使用される技術である。しかし、DNAへのタンパク質の弱い/一過性結合の検出には適していません。8つの塩基対からなるすべての可能な配列に平均タンパク質結合特異性に関する情報を提供するユニバーサルPBMとは異なり、HTPPは、ユニークな配列要素を含む一本鎖DNAテンプレートのライブラリに基づいています。このようなDNA配列要素は、数万の短い(数十bp)ゲノム配列を含むだけでなく、異なる平均GC含有量を有するゲノム中に存在する特定のDNA反復配列要素に富む計算的に設計されたDNA配列を含む。.このようなハイスループットアプローチは、系統的、定量的、および仮説駆動的な方法で、プリマゼ結合およびその酵素活性3に重要な配列関連特性の決定を可能にする。特に、プリマーゼ-DNA結合の好みとの間の重要なリンクは、(特定の三ヌクレオチド結合部位を横切るDNA配列によって調節される)およびプリマゼ処理性がこの酵素系4について同定された。

この新技術は、広範囲に研究されているT7 DNAプリマゼについても、プリマゼ認識部位の理解を再検討するために適用された5.具体的には、タンパク質DNA結合マイクロアレイ(PBM)を用いてT7 DNAプリマーゼのDNA認識部位(ほぼ40年前に決定された)などの古典的な概念の再検討は、関連する特徴に関する前例のない洞察をもたらした。これらの認識サイト3の側面配列.T7 DNAプリマーゼ(5′-GTC-3′)の三ヌクレオチド認識部位を横切る配列はランダムであると予想された。その代わりに、TGが豊富なフランク配列は、T7 DNAプリマーゼが処理性の増加を示すより長いRNAプライマーを合成する可能性を高めることがわかった。

インビトロでタンパク質のDNA結合特性を研究するために使用できる他の方法は、電気泳動性シフトアッセイ(EMSA)7、DNase Iフットプリント8、表面プラズモン共鳴(SPR)9、および南西部ブロッティングを含む10.しかし、これらは、少数のDNA配列を調査する場合にのみ適用可能な低スループット法である。さらに、これらの技術の一部の精度および感度(例えば、EMSA)は低い。一方、インビトロ選択11は、PBMと同様に、多数の結合配列の同定に使用することができる技術である。ただし、低アフィニティシーケンスは、通常、インビトロ選択のほとんどのアプリケーションで除外されます。したがって、この方法は、使用可能なすべてのシーケンスの比較バインディング データを取得するのに適していません。ユニバーサルPBM1、2は、主に原核生物および真核生物からの転写因子の結合特異性および特定の因子(例えば、特定のリガンドの存在、補因子など)を特徴付けるために使用される。この相互作用に影響を与える 12.

HTPPは、これまでにない高スループットの統計力と高精度を組み合わせることで、PBMアプリケーションをDNA処理酵素に拡大し、結合配列コンテキストに関する情報を提供します。このようなデータは、他の利用可能な技術の前述の技術的な制限のために、プリマセスおよび関連酵素(DNAに弱い/一過性結合を有する)についてまだ得られていない。

Protocol

1. マイクロアレイの設計 注:DNAプローブは、2つの可変横面領域の間に位置するT7 DNAプリマーゼ(GTC)の認識部位からなるカスタム36ヌクレオチド配列を表し、続いてガラススライド3につながれた一定の24ヌクレオチド配列を示す。4 x 180,000 マイクロアレイ形式を使用し、スライド上でランダムに分散した 6 回の複製で各 DNA 配列をスポッティングすることを?…

Representative Results

プリマゼ結合部位をマッピングするためのこの技術進歩により、古典的なツールを使用して観察することは不可能ではないにしても困難なDNA結合特性の取得を可能にします。さらに重要なことは、HTPPは、プリマゼ結合部位の伝統的な理解の再検討を可能にする。具体的には、HTPPは既知の5′-GTC-3’認識配列に加えて結合特異性を明らかにし、T7 DNAプリマゼの機能活性の?…

Discussion

このPBM法は転写因子の結合特性を調べるために広く用いられており、親和性の低いDNAに結合するDNAプリマーゼなどのDNA処理酵素にも適用できます。ただし、実験手順の特定の変更が必要です。マイクロアレイ実験には、DNAライブラリーの設計、チップの調製、タンパク質標的の結合、蛍光標識、およびスキャンといういくつかのステップが含まれます。洗剤を含む溶液を含む溶液を使用した?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

本研究はイスラエル科学財団(助成第1023/18号)の支援を受けています。

Materials

40% acrylamide-bisacrylamide (19:1) solution Merck 1006401000
95% formamide Sigma-Aldrich F9037-100ML
Alexa 488-conjugated anti-his antibody Qiagen 35310
Ammonuium persulfate (APS) Sigma-Aldrich A3678-100G
ATP, [α-32P] – 3000 Ci/mmol Perkin Elmer NEG003H250UC
Boric acid, granular Glentham Life Sciences GE4425
Bovine Serum Albumin (BSA) Roche 10735094001
Bromophenol blue Sigma-Aldrich B0126-25G
Coplin jar
Dithiothreitol (DTT) Sigma-Aldrich D0632-25G
DNA microarray Agilent 4x180K (AMADID #78366)
https://www.agilent.com
Ethylenediaminetetraacetic acid (EDTA) Acros Organics AC118430010
Fujifilm FLA-5100 phosphorimager FUJIFILM Life Science
Glass slide staining rack Thermo Scientific 12869995 If several slides are used
Lab rotator Thermo Scientific 88880025
Magnesium chloride Sigma-Aldrich 63064-500G
Microarray Hybridization Chamber Agilent G2534A https://www.agilent.com/cs/library/usermanuals/Public/G2534-90004_HybridizationChamber_User.pdf
Microarray scanner (GenePix 4400A) Molecular Devices
Phosphate Buffered Saline (PBS) Sigma-Aldrich P4417-100TAB
Potassium glutamate Alfa Aesar A172232
Ribonucleotide Solution Mix (rNTPs) New England BioLabs N0466S
Salmon testes DNA Sigma-Aldrich D1626-1G
Skim milk powder Sigma-Aldrich 70166-500G
Staining dish Thermo Scientific 12657696
Tetramethylethylenediamine (TEMED) Bio-Rad 1610800
Tris base (2-Amino-2-(hydroxymethyl)-1,3-propanediol) Sigma-Aldrich 93362-500G
Triton X-100 Sigma-Aldrich X100-500ML
Tween-20 Sigma-Aldrich P9416-50ML
Urea Sigma-Aldrich U6504-1KG
Xylene cyanol Alfa Aesar B21530

References

  1. Berger, M. F., Bulyk, M. L. Protein binding microarrays (PBMs) for rapid, high-throughput characterization of the sequence specificities of DNA binding proteins. Methods in Molecular Biology. 338, 245-260 (2006).
  2. Berger, M. F., Bulyk, M. L. Universal protein-binding microarrays for the comprehensive characterization of the DNA-binding specificities of transcription factors. Nature Protocols. 4 (3), 393-411 (2009).
  3. Afek, A., et al. DNA Sequence Context Controls the Binding and Processivity of the T7 DNA Primase. iScience. 2, 141-147 (2018).
  4. Afek, A., Schipper, J. L., Horton, J., Gordan, R., Lukatsky, D. B. Protein-DNA binding in the absence of specific base-pair recognition. Proceedings of the Nationaly Academy of Sciences of the Unitet States of America. 111 (48), 17140-17145 (2014).
  5. Frick, D. N., Richardson, C. C. Interaction of bacteriophage T7 gene 4 primase with its template recognition site. Journal of Biological Chemistry. 274 (50), 35889-35898 (1999).
  6. Tabor, S., Richardson, C. C. Template recognition sequence for RNA primer synthesis by gene 4 protein of bacteriophage T7. Proceedings of the Nationaly Academy of Sciences of the Unitet States of America. 78 (1), 205-209 (1981).
  7. Fried, M., Crothers, D. M. Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Research. 9 (23), 6505-6525 (1981).
  8. Galas, D. J., Schmitz, A. DNAse footprinting: a simple method for the detection of protein-DNA binding specificity. Nucleic Acids Research. 5 (9), 3157-3170 (1978).
  9. Jost, J. P., Munch, O., Andersson, T. Study of protein-DNA interactions by surface plasmon resonance (real time kinetics). Nucleic Acids Research. 19 (10), 2788 (1991).
  10. Bowen, B., Steinberg, J., Laemmli, U. K., Weintraub, H. The detection of DNA-binding proteins by protein blotting. Nucleic Acids Research. 8 (1), 1-20 (1980).
  11. Oliphant, A. R., Brandl, C. J., Struhl, K. Defining the sequence specificity of DNA-binding proteins by selecting binding sites from random-sequence oligonucleotides: analysis of yeast GCN4 protein. Molecular Cell Biology. 9 (7), 2944-2949 (1989).
  12. Marmorstein, R., Fitzgerald, M. X. Modulation of DNA-binding domains for sequence-specific DNA recognition. Gene. 304, 1-12 (2003).

Play Video

Citer Cet Article
Ilic, S., Cohen, S., Afek, A., Gordan, R., Lukatsky, D. B., Akabayov, B. DNA Sequence Recognition by DNA Primase Using High-Throughput Primase Profiling. J. Vis. Exp. (152), e59737, doi:10.3791/59737 (2019).

View Video