Bu protokol, insan dışkı Mikrobiyota bir in vitro toplu kültür fermantasyon sistemi açıklar, inulin kullanarak (iyi bilinen bir prebiyotik ve en yaygın olarak okudu Mikrobiyota Modulators) belirli etkileri tahmin bu sistemin kullanımını göstermek için dışkı mikrobiota kompozisyon ve metabolik faaliyetler üzerinde müdahaleler.
Çeşitli insan hastalıklarında bağırsak mikrobiyomunun gelişmekte olan rolü yeni araçlar, teknikler ve teknolojiler bir atılım gerektirir. Bu tür iyileştirmeler, insan sağlığı faydaları için Mikrobiyom modülatörlerin kullanımını deşifre etmek için gereklidir. Ancak, Mikrobiyom modülasyonunu doğrulamak ve ilgili sağlık avantajlarını tahmin etmek için modülatörlerin büyük ölçekli tarama ve optimizasyonu, çok sayıda hayvan ve/veya insan konularına ihtiyaç nedeniyle pratik olarak zor olabilir. Bu amaçla, in vitro veya ex vivo modeller Mikrobiyom modülatörlerin ön taramasına olanak verebilir. Burada, optimize edilmiş ve probiyotikler, prebiyotik ve diğer gıda maddeleri de dahil olmak üzere gut Mikrobiyom modülatörlerin çeşitli müdahalelerin etkilerini incelemek için kullanılabilecek bir ex vivo dışkı mikrobiota kültür sistemi göstermiştir, kenara Nutraceuticals ve ilaçlar, çeşitlilik ve insan bağırsak mikrobiota bileşimi üzerinde. INULİN, en yaygın olarak çalışan prebiyotik bileşikler ve Mikrobiyom modülatörlerinden biri, burada sağlıklı dışkı mikrobiota kompozisyon ve onun metabolik faaliyetleri üzerinde etkisini incelemek için bir örnek olarak kullanılır, dışkı pH ve organik asitlerin dışkı seviyeleri gibi lakdamak ve kısa zincir yağ asitleri (SCFAs) dahil. Protokol, farklı modülatörlerin dışkı mikrobiota profillerinde ve sağlık etkilerini tahmin etme konusundaki etkilerini tahmin etme amaçlı çalışmalar için yararlı olabilir.
İnsan Mikrobiyota bakteri, antik, virüsler ve ökaryotik mikroplardan oluşan kompleks bir topluluktur1, insan vücudunun dahili ve dıştan olması. Son kanıtlar, obezite, diyabet dahil olmak üzere çeşitli insan hastalıklarında bağırsak Mikrobiyota ve bağırsak mikrobiyomu (mikropların ve genlerinin tüm koleksiyonu insan gastrointestinal sistem içinde bulunan) temel rolünü kurduk kardiyovasküler hastalıklar, ve kanser1,2,3. Ayrıca, bizim gut yaşayan mikroorganizmalar önemli ölçüde sağlığımızı etkileyen metabolitler geniş bir spektrum üretmek ve ayrıca çeşitli hastalıkların patofizyolojisi yanı sıra çeşitli metabolik fonksiyonlar katkıda bulunabilir4, 5. Bu bağırsak mikrobiyal nüfusun bileşimi ve fonksiyonunda anormal değişiklikler (perturbations) genellikle “gut dysbiosis” olarak adlandırılır. Dysbiosis genellikle ev sahibinin sağlıksız bir devlet ile ilişkilidir ve bu nedenle normal (homeostatik) mikrobiyal topluluktan ev sahibi sağlıklı bir kontrol durumu ile ilişkili ayırt edilebilir. Gut Mikrobiyom dysbiosis spesifik desenler genellikle çeşitli hastalıklarda bulunur1,2,3,6,7.
Sindirilmemiş gıda fermantasyon, özellikle fermente karbonhidratlar/lifler, gut Mikrobiyota tarafından sadece enerji verir değil, aynı zamanda kısa zincir yağ asitleri (scfas), lakdamak, formate, karbondioksit dahil olmak üzere farklı metabolitler üretir metan, hidrojen ve etanol6. Buna ek olarak, gut Mikrobiyota da folat gibi diğer biyoaktif maddelerin bir dizi üretir, biotin, trimethylamine-N-oksit, serotonin, triptofan, gama-aminobutirik asit, dopamin, norepinefrin, asetilkolin, histamin, desoksikolik asit, ve 4-etilfenil sülfat. Bu, öncelikle, çeşitli vücut süreçleri, metabolik fonksiyonlar ve epigenetik değişiklikler1,8,9katkıda ev sahibi mikrobe niş içinde içsel metabolik Cereyanlar kullanımı ile oluşur 10‘ a kadar. Ancak, bu tür mikrobiyal ürünlere yönelik çeşitli müdahalelerin etkileri, kolay, verimli ve tekrarlanabilir protokollerin olmaması nedeniyle belirsizliğini koruyor. İnsan bağırsak mikrobiota kompozisyon son derece karmaşık ve çeşitli ekosistem, ve dolayısıyla, insan sağlığı ve hastalık patolojisinde rolü hakkında birçok soru hala cevapsız kalır. Birçok ortak bağırsak Mikrobiyom modülatörlerinin etkileri (örn., probiyotikler, Prebiyotikler, antibiyotikler, dışkı nakli ve enfeksiyonlar) bağırsak mikrobiota bileşimi ve metabolik fonksiyonları büyük ölçüde zor kalır. Buna ek olarak, muayene ve bu etkilerini doğrulama in vivo zordur, özellikle çünkü bağırsak mikrobiota tarafından üretilen besin ve metabolitlerin çoğu emilir veya aynı anda ve hızlı bir şekilde bağırsakta bertaraf; Bu nedenle, bu metabolitlerin üretim, miktar ve işlenmesi ölçümü (örn., SCFAs) in vivo hala pratik bir zorluk kalır. Nitekim, hayvanlar ve insan konuları gibi fizyolojik modeller, bağırsak mikrobiyomunun rolünü belirlemek ve ana sağlık üzerindeki modülasyonu için kritik öneme sahiptir, ancak bu durum nedeniyle farklı Mikrobiyom modülatörlerinin büyük ölçekli taramaları için uygun olmayabilir. Etik, parasal veya zaman kısıtlamaları. Bu amaçla, in vitro ve/veya ex vivo modelleri, gut Mikrobiyota in vitro kültürü gibi ve daha sonra farklı Mikrobiyota modülatörler ile müdahale, zaman sunabilir ve para tasarrufu fırsatları ve dolayısıyla ön veya büyük ölçekli tarama için izin verebilir çeşitli bileşenler (probiyotikler gibi, Prebiyotikler, ve diğer girişimsel bileşikler) incelemek/dışkı mikrobiota çeşitlilik üzerindeki etkilerini tahmin, kompozisyon ve metabolik profiller. Gut mikrobiyomunun böyle in vitro ve ex vivo sistemlerini kullanan çalışmalar, ana sağlık ve hastalığa katkıda bulunan ana bilgisayar-Mikrobiyom etkileşimlerinin daha fazla anlayışını kolaylaştırabilir ve aynı zamanda mikrobiyomu hedefleyen yeni tedaviler bulmaya yol açabilir Ana sağlık iyileştirmek ve önlemek ve çeşitli hastalıklar tedavi1.
İn vitro gut Mikrobiyota kültür sistemleri gerçekten gerçek bağırsak koşullarını çoğaltmak olmasa da, birkaç laboratuar bazı ölçüde uygulanabilir bulundu ve başarıyla kullanılan bu tür modeller geliştirmek için çaba var farklı amaçlar. Son bağırsak modellerinden biri, mide, ince bağırsak ve kolon farklı bölgeleri de dahil olmak üzere tüm insan gastrointestinal sistemi taklit eden ınsan bağırsak mikrobiyal ekosisteminin simülatörüdür. Ancak, bu tür teknik karmaşık modeller dünya çapında diğer araştırma tesisleri için erişilebilir olmayabilir. Bu nedenle, Mikrobiyom modülatörleri ve bağırsak Mikrobiyota ve ana sağlık üzerindeki etkilerini okuyan laboratuvarlar için nispeten basit, uygun fiyatlı ve pratik yeni alternatif modellerin geliştirilmesi için kritik bir ihtiyaç hala vardır. Bu nedenle, bir in vitro kullanımı (veya ex vivo) dışkı Mikrobiyota kültür sistemi bu tür müdahalelerin etkilerini incelemek için yararlı olacaktır11,12. Özellikle, bağırsak mikrobiota çeşitlilik ve kompozisyon periyodik değişiklikler açısından mikrobiota fermantasyon kapasitesi üzerinde farklı prebiyotikler etkisi, dışkı pH ve SCFAs ve lakdamak dahil mikrobiyal metabolitlerin seviyeleri incelenebilir 13. burada, Mikrobiyom Modülatörün bir örneği olarak inulin (en yaygın olarak çalışılan prebiyotik bileşenlerden biri) kullanarak, bu basit ex vivo Mikrobiyota toplu kültür sisteminin bir adım-adım protokolü, tahmin etmek için kullanımını göstermek için açıklanmıştır Mikrobiyom modülatörleri ile müdahale aşağıdaki dışkı Mikrobiyota ve mikrobiyal metabolitleri değişiklikler.
Burada sunulan in vitro dışkı Bulamaç fermantasyon modeli, farklı substratlar ve mikrobiyal suşları (örn. prebiyotik ve probiyotikler) etkileri yaklaşık olarak insan dışkı mikrobiota bileşimi üzerinde basit bir tek toplu model yanı sıra onun dışkı pH ve SCFAs seviyeleri açısından metabolik faaliyetler. Burada sunulan sonuçlar iniyanenin inokülasyon dışkı pH azaltır ve önemli ölçüde INULİN-tedavi dışkı mikrobiota kültürü ile karşılaştırıldığında iç-tedavisi dışkı numuned…
The authors have nothing to disclose.
Yazarlar minnetle diyabet, obezite ve metabolizma ve klinik ve translasyonel Bilim Merkezi, uyandırma orman Okulu tıp, Bölüm Savunma Fonu (Grant numarası: W81XWH-18-1-0118) için merkezi ‘nden fon desteği kabul Kardiyovasküler tıp Kermit Glenn Phillips II koltuğu; Ulusal Sağlık Enstitüleri Claude D. Pepper eski Amerikalılar Merkezi (P30AG12232 tarafından finanse) finanse; R01AG18915; R01DK114224 ve klinik ve translasyonel Bilim Merkezi (klinik araştırma birimi, UL1TR001420 tarafından finanse edilen), aynı zamanda minnetle kabul edilir. Biz de dışkı örnekleri sağlamak için gönüllülere teşekkür ederiz, ve teknik için diğer laboratuar üyeleri bu deney sırasında yardımcı olur.
Ammonium Bicarbonate (NH4HCO3) | Sigma-Aldrich | 217255 | |
Ammonium Sulfate (NH4)2SO4 | TGI | C2388 | Toxic |
Calcium Chloride Dihydrate (CaCl2•2H2O) | Sigma-Aldrich | C3306 | Irritating |
Cobaltous Chloride Hexahydrate (CoCl2•6H2O) | Sigma-Aldrich | 255599 | |
Cupric Chloride Dihydrate (CuCl2•2H2O) | Acros organics | 2063450000 | Toxic, Irritating |
Cysteine-HCl | Sigma-Aldrich | C121800 | |
D-biotin | Sigma-Aldrich | B4501 | |
D-Pantothenic acid | Alfa Aesar | A16609 | |
Disodium Ethylenediaminetetraacetate Dihydrate (Na2EDTA) | Biorad | 1610729 | |
DL-α-methylbutyrate | Sigma-Aldrich | W271918 | |
Ferrous Sulfate Heptahydrate (FeSO4•7H2O) | Sigma-Aldrich | F8263 | Toxic |
Folic acid | Alfa Aesar | J62937 | |
Glucose | Sigma-Aldrich | G8270 | |
Hemin | Sigma-Aldrich | H9039 | |
Hepes | Alfa Aesar | A14777 | |
Isobutyrate | Alfa Aesar | L04038 | |
Isovalerate | Alfa Aesar | A18642 | |
Magnesium Chloride Hexahydrate (MgCl2•6H2O) | Sigma-Aldrich | M8266 | |
Manganese Chloride Tetrahydrate (MnCl2•4H2O) | Sigma-Aldrich | 221279 | |
Niacin (Nicotinic acid) | Sigma-Aldrich | N4126 | |
Nickel(Ii) Chloride Hexahydrate (NiCl2•6H2O) | Alfa Aesar | A14366 | Toxic |
N-valerate | Sigma-Aldrich | 240370 | |
P-aminobenzoic acid | MP China | 102569 | Toxic, Irritating |
Phosphoric Acid (H3PO4) | Sigma-Aldrich | P5811 | |
Potassium Dihydrogen Phosphate (KH2PO4) | Sigma-Aldrich | P5504 | |
Potassium Hydrogen Phosphate (K2HPO4) | Sigma-Aldrich | 1551128 | |
Pyridoxine | Alfa Aesar | A12041 | |
Resazurin | Sigma-Aldrich | R7017 | |
Riboflavin | Alfa Aesar | A11764 | |
Sodium carbonate (Na2CO3) | Sigma-Aldrich | 1613757 | |
Sodium chloride (NaCl) | Fisher BioReagents | 7647-14-5 | |
Sodium hydroxide (NaOH) | Fisher Chemicals | S320 | |
Sodium Molybdate Dihydrate (Na2MoO4•2H2O) | Acros organics | 206375000 | |
Thiamine Hydrochloride (Thiamin-HCl) | Acros organics | 148991000 | |
Trypticase | BD Biosciences | 211921 | |
Vitamin B12 | Sigma-Aldrich | V2876 | |
Yeast extract | Sigma-Aldrich | 70161 | |
Zinc Sulfate Heptahydrate (ZnSO4•7H2O) | Sigma-Aldrich | Z0251 | |
0.22 µm membrane filter | |||
AMPure magnetic purification beads | Agencourt | ||
Anaerobic chamber with incubatore | Forma anaerobic system, Thermo Scientific, USA | ||
Bottle filter | Corning | ||
Cheesecloth | |||
Illumina MiSeq sequencer | Miseq reagent kit v3 | ||
pH meter | |||
Qiagen PowerFecal kit | Qiagen | ||
Quantitative Insights into Microbial Ecology (QIIME) software | |||
Qubit-3 fluorimeter | InVitrogen | ||
Vortex | Thermoscientific | ||
Waters-2695 Alliance HPLC system | Waters Corporation |