Die umfassende Nutzung der SUM-Frequenzerzeugung (SFG) kann dazu beitragen, die Kettenkonformationsreihenfolge und den sekundären Strukturwandel an Polymer- und Biomakromolekülschnittstellen aufzudecken.
Als nichtlineare optische Spektroskopie zweiter Ordnung wurde die SUM-Frequenzerzeugung (SFG) in der Untersuchung verschiedener Oberflächen und Schnittstellen weit verbreitet eingesetzt. Diese nicht-invasive optische Technik kann die lokalen molekularen Informationen mit Monolayer- oder Submonolayer-Empfindlichkeit versorgen. Wir bieten hier experimentelle Methoden an, wie die vergrabene Schnittstelle sowohl für Makromoleküle als auch für Biomakromoleküle selektiv erkannt werden kann. Vor diesem Hintergrund werden grenzflächenförmige Sekundärstrukturen von Seidenfibroin und Wasserstrukturen um Modell-Kurzketten-Oligonukleotid-Duplex diskutiert. Erstere zeigt eine Kettenüberlappung oder räumliche Einschließungswirkung und letztere zeigt eine Schutzfunktion gegen die Ca 2+-Ionen, die sich aus dem chiralen Wirbelsäulenüberbau von Wasser ergeben.
Die Entwicklung der Summenfrequenzerzeugung (SFG) Schwingungsspektroskopie kann auf die Arbeit von Shen et al. vor dreißig Jahren1,2zurückdatiert werden. Die Einzigartigkeit der Grenzflächenselektivität und Submonolayer-Empfindlichkeit macht die SFG-Schwingungsspektroskopie von einer großen Anzahl von Forschern aus den Bereichen Physik, Chemie, Biologie und Materialwissenschaft usw. geschätzt3,4 ,5. Derzeit wird ein breites Spektrum wissenschaftlicher Fragen im Zusammenhang mit Oberflächen und Schnittstellen mit SFG untersucht, insbesondere für komplexe Schnittstellen in Bezug auf Polymere und Biomakromoleküle, wie z.B. die Kettenstrukturen und die strukturelle Entspannung an der vergrabene Polymerschnittstellen, die Proteinsekundärstrukturen und die Grenzflächenwasserstrukturen9,10,11,12,13,14, 15,16,17,18,19,20,21,22,23, 24,25,26.
Für Polymeroberflächen und -schnittstellen werden Dünnschichtproben in der Regel durch Spin-Beschichtung hergestellt, um die gewünschten Oberflächen oder Schnittstellen zu erhalten. Das Problem ergibt sich aus der Signalstörung der beiden Schnittstellen der vorbereiteten Filme, was zu Unannehmlichkeiten bei der Analyse der gesammelten SFG-Spektren27,28,29führt. In den meisten Fällen ist das Schwingungssignal nur von einer einzigen Schnittstelle, entweder Film/Substrat oder Film/das andere Medium, wünschenswert. Eigentlich ist die Lösung für dieses Problem ganz einfach, nämlich die Lichtfelder an der wünschenswerten Schnittstelle experimentell zu maximieren und die Lichtfelder an der anderen Schnittstelle zu minimieren. Daher müssen die Fresnel-Koeffizienten oder die lokalen Feldkoeffizienten über das Dünnschichtmodell berechnet und in Bezug auf die experimentellen Ergebnisse3,9,10,11, 12,13,14,15,30.
Unter Berücksichtigung des obigen Hintergrunds könnten einige polymere und biologische Schnittstellen untersucht werden, um die Grundlagenforschung auf molekularer Ebene zu verstehen. Im Folgenden, unter Deriddrei grenzflächenfragen als Beispiele: Sondierung Poly(2-Hydroxyethylmethacrylat) (PHEMA) Oberfläche und vergrabene Schnittstelle mit Substrat9, Bildung von Seidenfibroin (SF) Sekundärstrukturen auf der Polystyrol (PS) Oberfläche und Wasserstrukturen, die das Modell Kurzketten-Oligonukleotid Duplex16,21umgeben, zeigen wir, wie die SFG-Schwingungsspektroskopie hilft, die grenzflächenförmigen molekularen Strukturen im Zusammenhang mit der zugrunde liegenden Wissenschaft aufzudecken.
Um die strukturellen Informationen von molekularer Ebene aus zu untersuchen, hat SFG seine inhärenten Vorteile (z.B. Monolayer- oder Submonolayer-Empfindlichkeit und Grenzflächenselektivität), die zur Untersuchung verschiedener Schnittstellen, wie z. B. der fest/fest Flüssigkeit, Feststoff/Gas, Flüssigkeit/Gas, Flüssigkeit/Flüssigkeitsschnittstellen. Obwohl die Wartung der Geräte und die optische Ausrichtung noch zeitaufwändig sind, ist der Gewinn insofern erheblich, als die detaillierten molekularen Information…
The authors have nothing to disclose.
Diese Studie wurde vom State Key Development Program for Basic Research of China (2017YFA0700500) und der National Natural Science Foundation of China (21574020) unterstützt. The Fundamental Research Funds for the Central Universities, ein Projekt, das von der prioritären akademischen Programmentwicklung der Jiangsu-Hochschuleinrichtungen (PAPD) und des Nationalen Demonstrationszentrums für experimentelle biomedizinische Technik finanziert wird Auch die Bildung (Southeast University) wurde sehr geschätzt.
1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) | Avanti Polar Lipids, Inc. | 850355P-1g | |
Anhydrous ethanol | Sinopharm Chemical Reagent Co., Ltd | 100092680 | ≥99.7% |
CaF2 prism | Chengdu YaSi Optoelectronics Co., Ltd. | ||
Calcium chloride anhydrous | Sinopharm Chemical Reagent Co., Ltd | 10005817 | ≥96.0% |
deuterated DPPC (d-DPPC) | Avanti Polar Lipids, Inc. | 860345P-100mg | |
Electromagnetic oven | Zhejiang Supor Co., Ltd | C21-SDHCB37 | |
Langmuir-Blodgett (LB) trough | KSV NIMA Co., Ltd. | KN 2003 | |
Lithium bromide anhydrous | Sinopharm Chemical Reagent Co., Ltd | 20056926 | |
Milli-Q synthesis system | Millipore | Ultrapure water | |
Plasma cleaner | Chengdu Mingheng Science&Technology Co., Ltd | PDC-MG | Oxygen plasma cleaning |
Poly(2-hydroxyethyl methacrylate) (PHEMA) | Sigma-Aldrich Co., LLC. | 192066 MSDS | Mw = 300 000 |
Polystyrene | Sigma-Aldrich Co., LLC. | 330345 MSDS | Mw = 48 kDa and Mn = 47 kDa |
Silk cocoons | From Bombyx mori | ||
Single complementary strand of oligonucleotide | Nanjing Genscript Biotechnology Co., Ltd. | H03596 | 5'-CGAAGGCTTCCAGCT-3' |
Single strand of oligonucleotide | Nanjing Genscript Biotechnology Co., Ltd. | H04936 | 3¢-end modified by cholesterol-triethylene glycol(Chol-TEG) (5¢-GCTTCCGAAGGTCGA-3¢) |
Sodium carbonate anhydrous | Sinopharm Chemical Reagent Co., Ltd | 10019260 | ≥99.8% |
Spin-coater | Institute of Microelectronics of the Chinese Academy of Sciences | KW-4A | For the prepartion of ploymer films |
Step profiler | Veeco | DEKTAK 150 | For the measurement of film thickness |
Sum frequency generation (SFG) vibrational spectroscopy system | EKSPLA | A commercial picosecond SFG system |