スピン偏極走査型トンネル顕微鏡と組み合わせて一軸性ひずみを使用して、我々 は視覚化し、Fe の反強磁性ドメイン構造を操作1 + yテ、鉄系超伝導体の親化合物。
強相関電子系を理解するクエストは、新しい実験手法や方法論の開発に向けて実験計測の最前線をプッシュしています。ここで我々 は我々 の変数温度走査トンネル顕微鏡制御用試料面内一軸性ひずみを操作し、原子レベルでの電子の応答の調査に私たちを可能にする統合小説家造られた一軸性ひずみデバイスを使用します。走査トンネル顕微鏡 (STM) とスピン偏極技術を使用して、我々 は反強磁性 (AFM) ドメインおよび Fe1 +yテ サンプル、鉄系超伝導体の親化合物の原子構造を視覚化してこれらのドメインが適用の一軸性ひずみに応答する方法を示します。無歪のサンプルは、50 〜 150 の平均ドメイン サイズで AFM ドメイン、双方向を遵守する nm の応用の一軸性ひずみ下における単一方向ドメインへの移行。成果をここで発表は、対称性の破れ量子材料系を誘導すると電子物性をチューニングのための両方他の分光学的手法と同様、STM、貴重なチューニング パラメーターを利用する新しい方向を開きます。
高温超伝導銅酸化物・鉄系超伝導体、量子物質1,2の興味をそそられる状態です。超伝導の理解の主要な挑戦は電子ネマティック液晶とスメクチック相 (つまり電子状態の回転・並進対称性を破る) などのさまざまな対称性の破れた状態のローカルで絡み合う性質超伝導3,4,5,6,7。理解と超伝導を制御する主な目的は操作およびこれらの対称性の破れた状態の意図的なチューニングで。
一軸および二軸、ひずみが凝縮システム8,9,10、11,12、集団の電子状態を調整する確立された技術 13,14,15,16,17,18,19,20,21、 22。このきれいなチューニング、化学ドーピングによる障害の導入がなければが一般的使用されて実験の様々 な種類のバルク物性23,24,25,26 をチューニングするには.たとえば、一軸性圧力は Sr2若413および銅酸化物27でそして構造、磁性、超伝導と鉄系超伝導体のネマティック相転移に絶大な効果があると証明しました。10,14,28,29最近 SmB624の位相状態をチューニングするための実証されたと。しかし、STM、角度分解光電子分光 (ARPES) などの表面敏感な技術のひずみの使用は一致しない基板26,30上に限られたその場成長薄膜をされています。表面敏感実験における単結晶に歪みを適用することでの大きな課題では、超高真空 (UHV) の緊張したサンプルの切断があります。エポキシ樹脂にピエゾ スタック9,10,18,31または膨張19 の異なる係数を持つ板に薄いサンプルされている代替方向はここ数年 ,32。まだ両方のケースで適用ひずみの大きさはかなり限られています。
研究者ひずみ制約なしサンプル (圧縮ひずみ) と同時に STM を用いた表面構造を視覚化することができる新規機械一軸性ひずみのデバイスの使用を示す (図 1参照)。例として我々 は Fe1 +yテ、単結晶を使用して、 y = 0.10 (y は過剰の鉄濃度) 鉄カルコゲナイド超伝導体の親化合物。TN下 = ~ 60 K、Fe1 +yテ高温常磁性状態から状態への遷移、低温反強磁性の bicollinear ストライプ磁気秩序26,33 、34 (図 3 a, Bを参照)。磁気転移はさらに伴う構造転移正方晶から単斜晶系26,35。飛行機で AFM の順序は、斜方晶構造34の長い b 方向に沿って指すスピン構造を持つ detwinned ドメインを形成します。スピン偏極 STM を用いた AFM 順序を可視化、我々 は無歪の Fe1 +yのテ サンプルで双方向ドメイン構造をプローブし、負荷応力下における単一の大規模なドメインへの移行を観察 (の回路図を参照してください。図 3 C E)。これらの実験ショーの紹介、走査型トンネル顕微鏡でサンプルとその表面構造の同時イメージングの割断一軸性ひずみデバイスを用いた単結晶の成功した表面チューニングします。図 1は、回路図と機械的ひずみデバイスの写真を示します。
STM の中にサンプルを移動するために必要なすべての操作の腕マニピュレーターのセットを使用して実行されます。液体窒素や液体ヘリウムによって低温 STM は維持され、サンプルが近づいている前に少なくとも 12 時間冷却します。これは熱平衡に到達するサンプルと顕微鏡の温度をことができます。エレクトリックとアコースティック ノイズを分離するには、STM は、音響、電波シールド ル…
The authors have nothing to disclose.
P. a. no. 賞の下でのサポートから、米国国立科学財団 (NSF) のキャリアを認めています。DMR-1654482。ポーランド国立科学センター助成金なし 2011/01/B/ST3/00425 のサポート材料合成を行った。
Belleville spring disks | McMaster Carr | ||
Fe(1.1)Te | Single Crystal | ||
H20E | Epoxy Technology | ||
H74F | Epoxy Technology | ||
Micrometer screws | McMaster Carr | ||
Stainless Steel sheets (416) | McMaster Carr |