La combinación de microscopía electrónica de transmisión y transducción de señales en el útero es un poderoso enfoque para estudiar los cambios morfológicos en la ultraestructura fina del sistema nervioso durante el desarrollo. Este método combinado permite penetraciones profundas en cambios en los detalles estructurales subyacentes de neuroplasticidad con respecto a su representación topográfica.
El presente estudio combina la transducción en el útero con microscopía electrónica de transmisión (TEM) con el objetivo de un análisis preciso morfométricas de parámetros ultraestructurales en estructuras topográficas claramente identificados, afectados por una proteína de interés se introduce en el organismo vía transferencia viral. Este enfoque combinado permite una transición fluida de macroestructurales a identificación ultraestructural por mapas topográficos de la navegación en un atlas de tejido. Alta resolución microscopia electrónica del tejido en el útero-transduced revela la fina ultraestructura el neuropil y sus parámetros de plasticidad, tales como áreas de sección bouton sináptico, el número de vesículas sinápticas y mitocondrias dentro de un Perfil de Bouton, la longitud de los contactos sinápticos, sección áreas axonales, el grosor de las vainas de mielina, el número de laminillas del myelin y áreas de sección de perfiles de las mitocondrias. El análisis de estos parámetros revela conocimientos esenciales en los cambios de plasticidad ultraestructural en las áreas del sistema nervioso que se ven afectados por la transferencia viral de la construcción genética. Este método combinado no sólo se puede utilizar para estudiar el efecto directo de biomoléculas genéticamente o drogas en la plasticidad neuronal pero también abre la posibilidad para estudiar el rescate en el útero de la plasticidad neuronal (por ejemplo, en el contexto de enfermedades neurodegenerativas).
Ningún fotón puede penetrar a una muestra de tejido ultrafino en el grado de profundidad de un electrón. Esto atribuye ventajas inestimables a TEM en la captura de imágenes de resolución nanométrica de estructuras finas en comparación con técnicas de microscopía de luz. Por ejemplo, permite la visualización de los organelos intracelulares como mitocondrias, melanosomas y varios tipos de gránulos secretores, microtúbulos, microfilamentos, cilios, microvellosidades y uniones intercelulares (superficie de la célula TEM especializaciones), en particular sinapsis en el sistema nervioso1,2,3,4. El objetivo general del presente estudio metodológico es el reconocimiento ultraestructural de los cambios en la plasticidad neuronal durante el desarrollo sobre interferencia prenatal mediante la combinación de las técnicas de vanguardia de transducción en el útero y TEM. Virally codificadas proteínas de interés han sido transduced en el útero en el sistema nervioso central5,6,7, incluyendo la médula espinal6. Por ejemplo, en el útero transducción en combinación con TEM se ha utilizado para estudiar el efecto de la molécula de adherencia de célula L1 motor aprendizaje plasticidad en ratones deficientes en L1, en particular con respecto a la interacción entre las proteínas del receptor nuclear y L1 en las neuronas cerebelosas7.
El análisis de parámetros de neuroplasticidad requiere información precisa sobre la localización de las zonas más pequeñas dentro del sistema nervioso. Por lo tanto, es adecuada describir detalles ultraestructurales y su orientación topográfica exacta con respecto a otras estructuras. En el presente estudio, se presenta un método preparatorio específico con el objetivo de la investigación detallada de áreas morfológicas distintas basadas en la luz y la microscopia electrónica. Este enfoque combina varias técnicas de manipulación del tejido, a partir de transducción en el útero de ratón cerebro y médula espinal y seguido por la fijación de la perfusión, incrustación de molde y procesamiento del tejido para TEM. Un paso esencial entre la fijación y el procesamiento del tejido para TEM es la documentación de los tejidos, utilizando la técnica de reflexión de la luz de interferencia que permite la documentación precisa microfotográficos y baja magnificación de muestras de tejido8,9,10. Incorporado en el enfoque actual, esta técnica permite a los investigadores examinar detalles topográficos y estructurales de las superficies de tejido nervioso y de perfiles de segmento de muestra antes de su preparación para TEM.
Un marco especial para seccionar todo cerebro corresponde a las coordenadas estereotáxicas. Este marco de beneficios morfológica reconstrucción tridimensional (3D) de zonas en tejido nervioso y puede ser utilizado para el análisis morfométrico. Las macrographs de las visualizadas secciones se asignan a coordenadas topográficas, y las secciones en serie numeradas crear mapas en un atlas de tejido.
Después de procesamiento de la resina, se secciona el tejido embebido en secciones ultrafinas (< 70 nm) que contiene las áreas seleccionadas, según los mapas del atlas mencionado tejido. Las secciones ultrafinas son sometidas a TEM para obtención de imágenes de alta resolución de los parámetros (por ejemplo, áreas de sección transversal Perfil de botones sinápticos o axonales fibras) de la plasticidad de sus contenidos y de contactos a estructuras vecinas dentro del complejo neuropilo.
Con el método descrito en este documento, la transición de macroestructuras visualizado a micro – y nanoestructuras permite estudios comparativos detallados de la plasticidad neuronal morfológica después en el útero de transducción el desarrollo nervioso sistema.
Un paso crucial de transducción en el útero es el procedimiento de inyección. La inyección precisa en ventrículos cerebrales o en otra área de interés requiere experiencia y habilidad práctica. La más fina la punta microcapillary, el menor daño tisular puede ocurrir; sin embargo, esto es a costa de aumentar la presión de la inyección. En contraste con electroporación en el útero19,20,21,<sup class="xref"…
The authors have nothing to disclose.
Los autores agradecen a los colegas de la instalación animal en la Facultad de medicina, Universidad del Ruhr de Bochum, para el cuidado de sus animales y apoyo.
2,4,6-Tris(dimethyl-aminomethyl)phenol | Serva | 36975 | |
26Gx 1'' needle | Henke-Sass, Wolf GmbH | ||
410 Anaesthesia Unit for air pump | Biomedical Instruments (Univentor) | 8323102 | |
Adeno-associated virus serotype 1 (AAV1) | UKE (Viral Core Facility) | – | For references and target areas of AAV1 see: https://www.addgene.org/viral-vectors/aav/aav-guide/ and also: Designer gene delivery vectors: molecular engineering and evolution of adeno-associated viral vectors for enhanced gene transfer. Kwon I, Schaffer DV. Pharm Res. 2008 Mar;25(3):489-99. Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Burger C, Gorbatyuk OS, Velardo MJ, Peden CS, Williams P, Zolotukhin S, Reier PJ, Mandel RJ, Muzyczka N. Mol. Ther. 2004 Aug;10(2):302-17. Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. McCarty DM, Monahan PE, Samulski RJ. Gene Ther. 2001 Aug;8(16):1248-54. |
Agarose | Sigma-Aldrich | A9414 | low gelling agarose |
Air Pump | Biomedical Instruments (Univentor) | Eheim 100 | |
Araldite | CIBA-GEIGY | 23857.9 | resin for embedding of tissue |
aspirator tune assemblies | Sigma-Aldrich | A5177-5EA | |
Breathing Mask Mouse Anodized Aluminium | Biomedical Instruments (Univentor) | – | |
buprenorphine | Temgesic | ampules | painkiller |
capillaries | Science-Products | GB100TF-10 | with fillament |
Dodecenylsuccinic anhydride | Fluka | 44160 | |
Dumont tweezers (#3, 12 cm, straight, 0.2 x 0.12 mm) | FST | 11203-23 | |
electric shaver | Phillips | – | |
Ethicon sutures (Ethilon, 6-0 and 3-0) | Ethicon | – | polyamide |
eye lubricant | Bepanthene | – | |
Fast Green | Sigma-Aldrich | F7252 | for visualization of injected liquids |
Gas Routing Switch 4/2 connectors | Biomedical Instruments (Univentor) | 8433020 | |
halsted Mosquito hemostatic forceps (12.5 cm, straight) | FST | 13011-12 | |
Heparin-Natrium | Ratiopharm | 25 000 I.E./5 ml | |
Induction box for mice with horizontally moving lid. Inner dimensions: LxBxH: 155x115x130 mm. Wall thickness: 6 mm |
Biomedical Instruments (Univentor) | – | |
iris forceps (10cm, curved, serrated) | FST | 14007-14 | |
iris scissors (11cm, straight, tungsten carbide) | FST | 14501-14 | |
Isofluran OP Tisch, electrically heated, sm Outer dimensions: 257x110x18 mm. Heating area: 190×90 mm The removal of the isoflurane escaping the breathing mask is downwards in compliance with the regulations |
Biomedical Instruments (Univentor) | – | |
isoflurane (Attane) | JD medical | inhalation anesthesia | |
LED RGB lights | Cameo | CLQS15RGBW | LEDs 2 x 15 W |
Light microscope Basic DM E | Leica | – | 4x (N.A. 0.1 ∞/-), 10x (N.A. 0.22 ∞/0.17), 40x (N.A. 0.65 ∞/0.17), 100x (N.A. 1.25 ∞/0.17) objectives |
micropipette puller | Science-Products | P-97 | |
Mosquito hemostatic forceps (12.5cm, curved) | FST | 13010-12 | |
Nickel grids, 200 mesh | Ted Pella | 1GC200 | |
Osmium (VIII)-oxid | Degussa | 73219 | |
Propylene oxide | Fluka | 82320 | |
razor blades | Schick | 87-10489 | |
Sodium pentobarbital (Narcoren) | Merial GmbH | – | |
TC01mR 1-Channal temperature controller with feedback | Biomedical Instruments (Univentor) | – | |
Technovit 4004 two components glue | Kulzer | ||
Telemacrodevice | Canon | – | Canon Spiegelreflex Kamera EOS2000D, EF-S 18-55 mm f/3.5-5.6 IS STM Objective, Extension below 150 mm, Manual Extension Tube 7 mm ring, 14 mm ring, 28 mm ring, Macro reverse ring (58 mm), Canon copy stand. |
Thermopuller P-97 | Sutter Instruments | – | |
thin vibrating razor blade device | Krup | – | with Szabo thin blades |
toluidine blue | Sigma-Aldrich | 89640 | |
Transmission electron microscope C20 | Phillips | – | up to 200 kV |
Tygon 6/4 Tubing material for connection of all parts Outer diameter: 6mm Inner diameter: 4mm Wa ll thickness: 1mm |
Biomedical Instruments (Univentor) | – | |
Ultracut E | Reichert-Jung | – | ultramicrotome |
Univentor Scavenger | Biomedical Instruments (Univentor) | 8338001 | |
Vannas scissors (8 cm, straight) | FST | 15009-08 |