Summary

小鼠脑脊髓子宫转导后超微结构神经可塑性参数的评价

Published: February 26, 2019
doi:

Summary

透射电子显微镜和子宫转导的结合是研究神经系统发育过程中精细超微结构形态变化的有力方法。这种组合方法可以深入了解神经可塑性相对于其地形表现的结构细节的变化。

Abstract

本研究结合子宫转导和透射电子显微镜 (tem), 旨在精确地对地形结构中的超微结构参数进行形态测量分析, 这是受感兴趣的蛋白质影响的通过病毒转移引入生物体。这种组合方法允许从宏观结构到超微结构识别的顺利过渡, 通过遵循组织地图集中的地形导航地图。子宫内转染组织的高分辨率电子显微镜揭示了神经 pil 的精细超微结构及其可塑性参数, 如横截面突触 bouton 区、内突触囊和线粒体的数量。bouton 剖面、突触线长度、横截面轴突区、髓鞘厚度、髓鞘层数和线粒体剖面横截面区。对这些参数的分析揭示了对神经系统区域超微结构可塑性变化的重要洞察, 这些变化受到基因结构病毒转移的影响。这种组合方法不仅可以用来研究基因工程生物分子和药物对神经元可塑性的直接影响, 而且还为研究子宫内神经元可塑性的抢救提供了可能性 (例如, 在神经退行性疾病)。

Introduction

任何光子都不能穿透电子深度等级的超薄组织标本。与光学显微镜技术相比, 这在捕获精细结构的纳米分辨率图像方面具有宝贵的优势。例如, tem 允许细胞内细胞器的可视化, 如线粒体、黑色素体和各种类型的分泌颗粒、微管、微丝、纤毛、微绒毛和细胞间连接 (细胞表面)(专业), 特别是突触在神经系统1,2,3,4。本方法研究的总体目标是结合子宫内的最先进技术, 对产前干预后发育过程中神经可塑性变化的超微结构识别。病毒编码的感兴趣的蛋白质在子宫中被转化为中枢神经系统5,6,7, 包括脊髓6。例如, 在子宫转导联合 tem 已被用来研究细胞粘附分子 l1 对 l1 缺乏小鼠运动学习可塑性的影响, 特别是在 l1 和核受体蛋白之间的相互作用在小脑神经元7

神经可塑性参数的分析需要关于神经系统中最小区域定位的精确信息。因此, 它是足够的描述超微结构细节和他们的确切地形方向相对于其他结构。在本研究中, 提出了一种基于光镜和电子显微镜的具体准备方法, 旨在对不同的形态区域进行详细的研究。这种方法结合了组织操作的几种技术, 从小鼠大脑和脊髓的子宫转导开始, 然后是灌注固定, 霉菌包埋, 并处理组织的 tem。在透射电镜组织的嵌入和处理之间的一个重要步骤是组织的记录, 使用干涉光反射技术, 允许精确的微照片和低放大倍率的记录组织标本8,9,10。在目前的方法中, 这项技术使研究人员能够在准备 tem 之前检查神经组织表面和标本切片剖面的地形和结构细节。

一个特殊的框架, 用于分割整个大脑对应于立体定向坐标。该框架有利于神经组织中区域的形态三维重建, 可用于形态分析。可视化剖面的宏观图被指定为地形坐标, 按顺序编号的部分在组织地图集中生成地图。

根据上述组织地图集的地图, 在树脂处理后, 将嵌入组织切割成含有选定区域的超薄切片 (& lt;70 nm)。超薄切片采用透射电镜, 以获得其内容物的可塑性参数 (例如突触波或轴突纤维的横截面剖面区域) 的高分辨率图像, 以及与复合物内相邻结构的接触的图像神经皮。

通过本文所述的方法, 从可视化宏观结构到微观和纳米结构的平稳过渡, 使发育中神经的子宫传导后的形态神经元可塑性进行比较深入的研究系统。

Protocol

关于动物问题的所有程序都得到了德国联邦各州汉堡和北莱茵-韦斯特法伦的动物伦理机构委员会的批准。 在整个外科过程中使用无菌仪器、防护手套和无菌外套。 1. 子宫传导 在 ph 值7.4 的磷酸盐缓冲盐水 (pbs) 中, 为所需的靶标 (4 x10 11 病毒凝集物μμμl) 准备与腺病毒相关的 1 (aav1) 编码。加入 0.1 mgμμl 快速绿色, 并将 aav1-fast-绿色混合物保持在37°c。 ?…

Representative Results

为了对小鼠进行可靠、快速的麻醉, 考虑了许多安全参数, 并且麻醉单元的优化工作空间被证明是足够的 (图 1a)。该装置旨在精确控制液体异氟烷和环境空气的混合物, 并对小动物 (如小鼠和大鼠) 进行成功的手术。空气和异氟醚根据所需的设置混合在蒸发器中, 并通过面罩或通过面罩传送到动物体内 (图 1a</stron…

Discussion

在子宫转导的一个关键的步骤是注射程序。精确注射到脑室或其他感兴趣的领域需要经验和动手技巧。微毛细管尖端越薄, 可能发生的组织损伤越少;然而, 这是以增加注射压力为代价的。与子宫电穿孔19202122 相比, 在子宫转导后注射胚胎的存活率非常高。所有子宫角的胚胎都可以注射, 即使胚胎?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

作者感谢鲁尔大学波鸿医学院动物设施的同事们的支持和动物护理。

Materials

2,4,6-Tris(dimethyl-aminomethyl)phenol Serva 36975
26Gx 1'' needle Henke-Sass, Wolf GmbH
410 Anaesthesia Unit for air pump Biomedical Instruments (Univentor) 8323102
Adeno-associated virus serotype 1 (AAV1) UKE (Viral Core Facility) For references and target areas of AAV1 see: https://www.addgene.org/viral-vectors/aav/aav-guide/ and also: Designer gene delivery vectors: molecular engineering and evolution of adeno-associated viral vectors for enhanced gene transfer. Kwon I, Schaffer DV. Pharm Res. 2008 Mar;25(3):489-99. Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Burger C, Gorbatyuk OS, Velardo MJ, Peden CS, Williams P, Zolotukhin S, Reier PJ, Mandel RJ, Muzyczka N. Mol. Ther. 2004 Aug;10(2):302-17. Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. McCarty DM, Monahan PE, Samulski RJ. Gene Ther. 2001 Aug;8(16):1248-54.
Agarose Sigma-Aldrich A9414 low gelling agarose
Air Pump Biomedical Instruments (Univentor) Eheim 100
Araldite CIBA-GEIGY 23857.9 resin for embedding of tissue
aspirator tune assemblies Sigma-Aldrich A5177-5EA
Breathing Mask Mouse Anodized Aluminium Biomedical Instruments (Univentor)
buprenorphine Temgesic ampules painkiller
capillaries Science-Products GB100TF-10 with fillament
Dodecenylsuccinic anhydride Fluka 44160
Dumont tweezers (#3, 12 cm, straight, 0.2 x 0.12 mm) FST 11203-23
electric shaver Phillips
Ethicon sutures (Ethilon, 6-0 and 3-0) Ethicon polyamide
eye lubricant Bepanthene
Fast Green Sigma-Aldrich F7252 for visualization of injected liquids
Gas Routing Switch 4/2 connectors Biomedical Instruments (Univentor) 8433020
halsted Mosquito hemostatic forceps (12.5 cm, straight) FST 13011-12
Heparin-Natrium Ratiopharm 25 000 I.E./5 ml
Induction box for mice
with horizontally moving lid.
Inner dimensions: LxBxH: 155x115x130 mm.
Wall thickness: 6 mm
Biomedical Instruments (Univentor)
iris forceps (10cm, curved, serrated) FST 14007-14
iris scissors (11cm, straight, tungsten carbide) FST 14501-14
Isofluran OP Tisch, electrically heated, sm
Outer dimensions: 257x110x18 mm.
Heating area: 190×90 mm
The removal of the isoflurane escaping
the breathing mask is downwards in compliance with the
regulations
Biomedical Instruments (Univentor)
isoflurane (Attane) JD medical inhalation anesthesia
LED RGB lights Cameo CLQS15RGBW LEDs 2 x 15 W
Light microscope Basic DM E Leica 4x (N.A. 0.1 ∞/-), 10x (N.A. 0.22 ∞/0.17), 40x (N.A. 0.65 ∞/0.17), 100x (N.A. 1.25 ∞/0.17) objectives
micropipette puller Science-Products P-97
Mosquito hemostatic forceps (12.5cm, curved) FST 13010-12
Nickel grids, 200 mesh Ted Pella 1GC200
Osmium (VIII)-oxid Degussa 73219
Propylene oxide Fluka 82320
razor blades Schick 87-10489
Sodium pentobarbital (Narcoren) Merial GmbH
TC01mR 1-Channal temperature controller with feedback Biomedical Instruments (Univentor)
Technovit 4004 two components glue Kulzer
Telemacrodevice Canon Canon Spiegelreflex Kamera EOS2000D, EF-S 18-55 mm f/3.5-5.6 IS STM Objective, Extension below 150 mm, Manual Extension Tube 7 mm ring, 14 mm ring, 28 mm ring, Macro reverse ring (58 mm), Canon copy stand.
Thermopuller P-97 Sutter Instruments
thin vibrating razor blade device Krup with Szabo thin blades
toluidine blue Sigma-Aldrich 89640
Transmission electron microscope C20 Phillips up to 200 kV
Tygon 6/4 Tubing material for connection of all parts
Outer diameter: 6mm
Inner diameter: 4mm
Wa
ll thickness: 1mm
Biomedical Instruments (Univentor)
Ultracut E Reichert-Jung ultramicrotome
Univentor Scavenger Biomedical Instruments (Univentor) 8338001
Vannas scissors (8 cm, straight) FST 15009-08

References

  1. Blackstad, T. W., Kjaerheim, A. Special axo-dendritic synapses in the hippocampal cortex: electron and light microscopic studies on the layer of mossy fibers. Journal of Comparative. Neurology. 117, 133159 (1961).
  2. Hamlyn, L. H. The fine structure of the mossy fibre endings in the hippocampus of the rabbit. Journal of Anatomy. 96, 112-120 (1962).
  3. Peters, A., Palay, S., Webster, H. . The Fine Structure of the Nervous System. , (1991).
  4. Rollenhagen, A., et al. Structural determinants of transmission at large hippocampal mossy fiber synapses. Journal of Neuroscience. 27, 10434-10444 (2007).
  5. Lutz, D., et al. Myelin basic protein cleaves cell adhesion molecule L1 and promotes neuritogenesis and cell survival. Journal of Biological Chemistry. 289, 13503-13518 (2014).
  6. Lutz, D., et al. Myelin Basic Protein Cleaves Cell Adhesion Molecule L1 and Improves Regeneration After Injury. Molecular Neurobiology. 53, 3360-3376 (2016).
  7. Kraus, K., et al. A Fragment of Adhesion Molecule L1 Binds to Nuclear Receptors to Regulate Synaptic Plasticity and Motor Coordination. Molecular Neurobiology. 55, 7164-7178 (2018).
  8. Andres, K. H., von Düring, M. Interferenzphänomene am osmierten Präparat für die systematische elektronenmikroskopische Untersuchung. Mikroskopie. 30, 139 (1974).
  9. Andres, K. H., von Düring, M., Hayat, M. A. Interference phenomenon on somium tetroxide-fixed specimens for systematic electron microscopy. Principle and Techniques of Electron Microscopy: Biological Appliccations. , 246-261 (1997).
  10. Andres, K. H., von Düring, M., Heym, C., Forssmann, W. -. G. General Methods for Characterization of Brain Regions. Techniques in Neuroanatomical Research. , 100-108 (1981).
  11. Palay, S. L., McGee-Russel, S. M., Gordon, S., Grillo, M. A. Fixation of neural tissues or electron microscopy by perfusion with solutions of osmium tetroxide. Journal of Cell Biology. 12, 385-410 (1962).
  12. Webster, H. F., Collins, G. H. Comparison of osmium tetroxide and glutaraldehyde perfusion fixation for the electron microscopic study on the normal rat peripheral nervous system. Journal of Neuropathology and Experimental Neurology. 1, 109-126 (1964).
  13. Andres, K. H. Zur Methodik der Perfusionsfixierung des Zentralnervensystems von Säugern. Mikroskopie. 21, 169 (1967).
  14. Forssmann, W. G., et al. Fixation par perfusion pour la microscopie électronique. Essai. De généralisation. Journal de Microscopie. 6, 279-304 (1967).
  15. Descarries, L., Schröder, J. M. Fixation du tissue nerveux par perfusion à grand debit. Journal de Microscopie. 7, 281-286 (1968).
  16. Langford, L. A., Coggeshall, R. E. The use of potassium ferricyanide in neural fixation. Anatomical Records. 197, 297-303 (1980).
  17. Liu, J., et al. Calretinin-positive L5a pyramidal neurons in the development of the paralemniscal pathway in the barrel cortex. Molecular Brain. 7, 84 (2014).
  18. Lee, S. H., et al. Presenilins regulate synaptic plasticity and mitochondrial calcium homeostasis in the hippocampal mossy fiber pathway. Molecular Neurodegeneration. 12, 48 (2017).
  19. LoTurco, J., Manent, J. B., Sidiqi, F. New and improved tools for in utero electroporation studies of developing cerebral cortex. Cerebral Cortex. , 120-125 (2009).
  20. dal Maschio, M., et al. High-performance and site-directed in utero electroporation by a triple-electrode probe. Nature Communications. 3, 960 (2012).
  21. Nishiyama, J., et al. Selective and regulated gene expression in murine Purkinje cells by in utero electroporation. European Journal of Neuroscience. 36, 2867-2876 (2012).
  22. Takeo, Y. H., Kakegawa, W., Miura, E., Yuzaki, M. RORalpha regulates multiple aspects of dendrite development in cerebellar purkinje cells in vivo. Journal of Neuroscience. 35, 12518-12534 (2015).

Play Video

Citer Cet Article
Lutz, D., von Düring, M., Corvace, F., Augustinowski, L., Trampe, A., Nowak, M., Förster, E. Assessment of Ultrastructural Neuroplasticity Parameters After In Utero Transduction of the Developing Mouse Brain and Spinal Cord. J. Vis. Exp. (144), e59084, doi:10.3791/59084 (2019).

View Video