Summary

Hoher Durchsatz In Vitro Bewertung der Latenz Umkehrung Agenten auf HIV Transkription und Spleißen

Published: January 22, 2019
doi:

Summary

Ein hoher Durchsatz-Protokoll für funktionale Bewertung von HIV effiziente Reaktivierung und Clearance von latenten Proviruses ist beschrieben und durch die Auswirkungen von Interventionen auf die Transkription von HIV-Tests und Spleißen angewendet. Repräsentative Ergebnisse des Effekts der Latenz Umkehrung Agenten auf LTR-driven Transkription und Spleißen stehen zur Verfügung.

Abstract

HIV bleibt aufgrund der Existenz eines Reservoirs von Zellen, die stabil und latente Form des Virus, birgt für das Immunsystem unsichtbar bleibt und nicht durch die aktuelle antiretrovirale Therapie (cART) unheilbar. Transkription und Spleißen wurden gezeigt, HIV-1 Latenzzeiten in ruhenden CD4 + T-Zellen zu verstärken. Umkehrung der Latenz durch den Einsatz von Latenz Umkehr Agenten (Gebietskörperschaften) in der “Shock and Kill” Ansatz wurde ausgiebig untersucht, in dem Versuch, dieses Reservoir zu bereinigen, aber keinen Erfolg in klinischen Studien wegen mangelnder Entwicklung von angemessenen kleinen bisher nicht nachgewiesen Moleküle, die effizient dieses Reservoir durcheinanderbringen können. Die hier vorgestellten Protokoll stellt eine Methode zur zuverlässig und effizient Bewertung Latenz Umkehr Agents (Gebietskörperschaften) auf HIV Transkription und Spleißen. Dieser Ansatz basiert auf der Verwendung von ein LTR-gesteuerte dual Color-Reporter, der gleichzeitig die Wirkung von einem LRA auf Transkription und Spleißen messen kann durch Durchflusszytometrie. Das hier beschriebene Protokoll ist ausreichend für adhärente Zellen als auch die Zellen in der Suspension. Es eignet sich für eine große Anzahl von Drogen in einem hohen Durchsatz-System testen. Die Methode ist technisch einfach zu implementieren und kostengünstig. Darüber hinaus ist die Verwendung der Durchflusszytometrie ermöglicht die Beurteilung der Zellviabilität und somit Drogen Toxizität zur gleichen Zeit.

Introduction

Trotz wirksame langfristige antiretrovirale Therapie besteht HIV in einem latenten Zustand als eine integrierte Provirus im Speicher CD4 + T-Zellen-1. Das Chromatinstruktur des HIV-1-5 “lange terminal Repeat (LTR) Promoter und epigenetische Modifikationen wie Histon-Methylierung und Deacetylation durch DNA-Methyltransferasen (DNMT) und Histon Deacetylases (HDAC) sind wichtige Mechanismen, die transcriptional Repression und damit nach Integration Latenz2,3. Eine Vielzahl von Latenz Umkehr Agenten (Gebietskörperschaften) wurde untersucht, auf ihre Wirksamkeit induzieren Virus Produktion in-vitro- und in-vivo von latent infizierten ruhenden CD4 + T Zellen4,5,6,7 ,8. Unter den lokalen und regionalen Gebietskörperschaften getestet, HDACi (HDAC-Inhibitoren) und BET Bromodomain-Hemmer (BETis) induzieren Chromatin Enttauung und Freisetzung von positiven Transkription Dehnung Faktor b (P-TEFb) bzw., was zu nachfolgenden entlasten die transkriptionelle Repression auf die 5′ LTR und Aktivierung von HIV Ausdruck9,10,11,12,13. Das Ausmaß der Reaktivierung durch diese Gebietskörperschaften erreicht war jedoch begrenzt, da nur ein mäßiger Anstieg der Zelle-assoziierten unspliced HIV mRNA (uns RNA), bezeichnend für virale Transkription, ex Vivo14,15beobachtet wurde. Wichtig ist, versäumt diese lokalen und regionalen Gebietskörperschaften auch, eine Verringerung der Häufigkeit von latent infizierten Zellen induzieren.

HIV-Ausdruck kann weiter durch ineffiziente Spleißen16 sowie Mängel im nuklearen Export mehrfach gespleißte HIV-RNA (MS-RNA)17beschränkt sein. Daher sind zur Identifizierung neue Klassen von lokalen und regionalen Gebietskörperschaften, die sind stärker und können Einfluss auf verschiedene Aspekte der Virus Produktion Post-Integration erforderlich. Darüber hinaus ist die Entwicklung von neuartigen Assays, die helfen, definieren die optimale Verbindungen effizient Latenz umzukehren erforderlich.

Hier ist ein Protokoll präsentiert, was nutzt einen Hochdurchsatz-Ansatz für funktionale Bewertung der Auswirkungen von Interventionen auf die HIV-LTR-driven Transkription und Spleißen. Kurz gesagt, eine neue LTR-gesteuerte Dual color Reporter System pLTR.gp140/EGFP. RevΔ38/DsRed (Abbildung 1) wird zur Durchflusszytometrie HIV Reaktivierung zu beurteilen. In dieser fluoreszierende Reporter führt die Expression des unspliced mRNA HIV (4 kb), verbesserte grün fluoreszierendes Protein (EGFP) Ausdruck, während der Begriff der gespleißten mRNA (2 kb) Discosoma SP. rote (DsRed) fluoreszierendes Protein-Expression führen würde. Kurz gesagt, haben wir eine fluoreszierende Env-EGFP Schmelzverfahren Protein, gp140unc verwendet. EGFP, wo die kodierende Sequenz des EGFP in Frame mit einer UN-gespalten und verkürzten Form des Umschlags (Env) platziert wurde. Änderungen wurden eingeführt, um die Spaltstelle verhindern die Dissoziation der Env in gp120 und gp41-EGFP abtragen und zum Abschneiden der gp160-Protein vor der transmembrane Domäne erstellen eine lösliche Env analog, das erleichtert die korrekte Faltung und Ausdruck von EGFP. Auf den Ausdruck innerhalb einer Zelle, Rev lokalisiert in den Zellkern, wo es den nuklearen zytoplasmatischen Export von 4 kb Env vermittelt, mRNA über die Interaktion mit der Rev-responsive Element (RRE). Abschneiden der Env beeinträchtigt nicht die RRE liegt zwischen gp120 und gp41 und der A7 3′ Splice Site. In diesem System Spleißen bei HIV-1 splice Geber 4 (SD4) und Spleiß-Akzeptor 7 (SA7) Ergebnisse bei der Herstellung von 2 kb mRNA Kodierung ein nichtfunktionaler Rev-Protein bei Aminosäure 38 abgeschnitten mit DsRed fluoreszierendes Protein, RevΔ38-DsRed verschmolzen. Kurz gesagt, war das Exon 2Nd von Rev an Aminosäure 38 durch Überlappung Erweiterung18DsRed eingefügt. Um den nuklearen Export von unspliced mRNA zu erleichtern, wurde ein Säugetier Expressionsvektor Codierung Rev (pCMV-RevNL4.3) gemeinsam mit dem fluoreszierenden Reporter Konstrukt (Abbildung 2) transfiziert. Dieses einzigartige Reporter Konstrukt hier beschriebenen eignet sich im Hochdurchsatz-Bewertung der HIV-Übertragung und Spleißen, ohne die Notwendigkeit, virale Vektoren verwenden.

Protocol

Hinweis: Verfahren zum Klonen, Transformation und Sequenzierung sind an anderer Stelle erläutert18,19. Die Protokolle hier beginnt die Transfektion von Säugetieren Expressionsvektoren (Abbildung 3). 1. die Transfektion von HEK293T Zellen mit Dual Color Reporter zu konstruieren Pflegen Sie HEK293T Zellen in Dulbeccos modifizierten Eagle Medium (DMEM) ergänzt mit 10 % (V/V) feta…

Representative Results

Repräsentative Ergebnisse sind in Abbildung 5 gezeigt, die Expression von HIV-1 unspliced (EGFP) und gespleißt (DsRed) Produkte, die nach der Behandlung mit Bromodomain-Hemmer JQ1. JQ1(+) und Tat deutlich stieg der Anteil der Zellen mit dem Ausdruck EGFP (2,18 und 4.13 FC über DMSO bzw.; n = 3) bezeichnend für unspliced Transkripte. Darüber hinaus JQ1(+) deutlich stieg der Anteil der Zellen mit dem Ausdruck DsRed (46,6 FC über DMSO) sowie der Anteil der…

Discussion

Angesichts der Schwierigkeiten bei der Messung der Virus-Reaktivierung ex Vivo, infiziert eine Vielzahl von in-vitro-Modelle im Laufe der Zeit entwickelt wurden, um HIV-Latenz einschließlich latent studieren T-Zell-Linien (J-Lats, ACH2, U1), primäre Modelle der latenten Infektion ruhen ( O’ Doherty, Lewin, Greene und Spina-Modelle) oder pre-activated CD4 + T-Zellen (Sahu, Marini, Planelles, Siliciano, Karn Modelle) mit einzelnen Runde oder Replikation zuständigen Reporter Viren22. Um die physio…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Diese Arbeit wurde von Projekt Grant APP1129320 und Programm APP1052979 Stipendium der NHMRC Australia unterstützt. Wir danken Dr. Adam Wheatley, Dr. Marina Alexander, Dr. Jenny L. Anderson und Michelle Y. Lee für die wesentlichen Konstrukte und Beratung für den erfolgreichen Abschluss dieser Arbeit. Wir danken auch das DMI-Flow-Anlage Personal für ihre Ratschläge und großzügige Unterstützung bei der Aufrechterhaltung der in dieser Studie verwendeten Durchflusszytometer.

Materials

Cell culture
HEK293T cells (Human Embryonic Kidney cells) ATCC CRL-3216 Replicates vectors carrying the SV40 region of replication.
Dulbecco's Modified Eagle's Medium (DMEM 1x + GlutaMAX-I) Gibco 10569-010 + 4.5 g/L D-Glucose + 110 mg/L Sodium Pyruvate
Fetal Bovine serum Gibco 10099-141 Origin Australia
Penicillin-Streptomycin Sigma P4458
Dulbecco's phosphate buffered saline (DPBS), no calcium, no magnesium Gibco 14190-136
Trypan blue Stain, 0.4% Gibco 15250
Trypsin-EDTA (0.05%), phenol red Gibco 25300054
Lipofectamine 2000 Invitrogen 11668-019 Lipid transfection reagent
Opti-MEM I (1x) reduced serum medium Gibco 31985-070 Serum free medium
NucleoBond Xtra Maxi Marcherey-Nagel 740414.50
pEGFP-N1 plasmid Clontech (TaKaRa) 6085-1 Expression of EGFP in mammalian cells, CMVIE promoter.
pDsRed-Express-N1 Clontech (TaKaRa) 632429 Expression of DsRed-Express in mammalian cells, CMVIE promoter.
pLTR.gp140/EGFP.RevD38/DsRed Addgene 115775
pCMV-RevNL4.3 Addgene 115776
pCMV-Tat101AD8-Flag Addgene 115777
Dimethyl sulfoxide (DMSO) Millipore 67-68-5
JQ1(+) Cayman Chemical 11187 Stock at 10 mM in DMSO; working concentration 1 μM
JQ1(-) Cayman Chemical 11232 Stock at 10 mM in DMSO; working concentration 1 μM
Phorbol Myristate Acetate (PMA) Sigma-Aldrich 16561-29-8 Stock at 100 μg/mL in DMSO; working concentration 10 nM
Phytohaemagglutinin (PHA) Remel HA15/R30852701 Stock at 1 μg/μL in PBS; working concentration 10 μg/mL
Vorinostat (VOR) Cayman Chemical 10009929 Stock at 10 mM in DMSO; working concentration 0.5 μM
Panobinostat (PAN) TRC P180500 Stock at 10 mM in DMSO; working concentration 30 nM
CellTiter 96 AQueous One Solution Cell Proliferation Assay Promega 63581
Venor GeM Classic Minerva Biolabs 11-1100 Mycoplasma Detection Kit, PCR-based
Name Company Catalog Number Comments
Flow cytometry reagents
LSR Fortessa BD Biosciences Flow cytometer (4 lasers-blue, red, violet and yellow)
LSR II BD Biosciences Flow cytometer (3 lasers-blue, red and violet)
LIVE/DEAD Fixable Near-IR Dead Cell Stain Kit Life Technologies L34976 Viability dye: for 633 or 635 nm excitation, 400 assays. Component A and B are both provided in the kit.
Bovine Serum Albumin Sigma A2153
EDTA 0.5M pH8 Gibco 15575-038
Formaldehyde Solution 37/10 (37%) Chem-Supply FA010
BD FACS Diva CS&T Research Beads BD Biosciences 655050 Calibration beads
Sphero Rainbow Calibration Particles (8 peaks) BD Biosciences 559123 3.0 – 3.4 mm
Sheath solution Chem-Supply SA046 90 g NaCl in 10 L water
HAZ-Tabs Guest Medical H8801 Chlorine release tablets for disinfection
Decon 90 Decon Laboratories Limited N/A Concentrated cleaning agents of flow cytometer. Working solution Decon 90 5%.
Sodium Hypochlorite (12-13% Solution) Labco SODHYPO-5L Concentrated cleaning agents of flow cytometer. Working solution bleach 1%.
7x MPBio IM76670 Concentrated cleaning agents of flow cytometer. Working solution 7x 1%.
Name Company Catalog Number Comments
Materials
Tissue culture flasks (75 cm2, canted neck, cap vented) Corning 430641U
Tissue culture plates (96 well flat bottom with lid) Costar 3599
Tissue culture plates (96 well V-bottom without lid) Costar 3896
Centrifuge tubes (10 mL) SARSTEDT 62.9924.284 100×16 mm
Centrifuge tubes (50 mL) CellStar 227261 30×115 mm
Microcentrifuge tubes (1.5 mL) Corning Axygen MCT-150-C
Serological Pipette (25 mL), sterile Corning CLS4489-200EA
Serological Pipette (10 mL), sterile Corning CLS4488-200EA
Serological Pipette (5 mL), sterile Corning CLS4487-200EA
Reagent reservoirs (50 mL), sterile Corning CLS4470-200EA
5 mL Round-Bottom polystyrene test tube, with cell-strainer cap Corning 352235 12 x 75 mm style, 70 mm
Nylon Mesh SEFAR 03-100/32 100 mm
Titertube Micro test tubes, bulk BIO-RAD 2239391 microfacs tubes
5 mL Round-Bottom polystyrene test tube, without cap Corning 352008 12×75 mm style
Snap Caps for 12×75 mm Test Tubes Corning 352032
Counting chamber, Neubauer improved double net ruling, bright-line (Haemocytometer, LO-Laboroptik) ProSciTech SVZ4NIOU 3×3 large squares of 1 mm2; Depth 0.100 mm; volume 0.1 mL; area minimum 0.0025 mm2
Coverslips (Menzel-Gläser) Grale Scientific HCS2026 20 x 26 mm
Microscope Nikon TMS 310528
Centrifuge 5810R refrigerated Eppendorf 5811000487 with rotor A-4-81 including adapters for 15/50 mL conical tubes
FLUOstar Omega microplate reader BMG Labtech N/A Plate reader for cell proliferation assay. Filter 490 nm.
Name Company Catalog Number Comments
Softwares
FACS Diva BD Biosciences Flow cytometer data acquisition and analysis program, version 8.0.1
FlowJo FlowJo FlowJo 10.4.2 Flow cytometer data analysis program, FlowJo Engine v3.05481
Omega BMG Labtech FLUOstar multi-user reader control, version 5.11
Omega – Data Analysis BMG Labtech MARS FLUOstar data analysis, version 3.20R2
Microsoft Excel Microsoft Excel:mac 2011 version 14.0.0
Prism GraphPad Prism 7 version 7.0c

References

  1. Siliciano, J. D., et al. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nature Medicine. 9 (6), 727-728 (2003).
  2. Khoury, G., et al. Ch. 8. HIV vaccine and cure – The Path Towards Finding an Effective Cure and Vaccine. 1075, (2018).
  3. Van Lint, C., Bouchat, S., Marcello, A. HIV-1 transcription and latency: an update. Retrovirology. 10, 67 (2013).
  4. Archin, N. M., et al. HIV-1 Expression Within Resting CD4+ T Cells After Multiple Doses of Vorinostat. Journal of Infectious Diseases. 210, 728-735 (2014).
  5. Elliott, J. H., et al. Activation of HIV Transcription with Short-Course Vorinostat in HIV-Infected Patients on Suppressive Antiretroviral Therapy. PLoS Pathogens. 10, (2014).
  6. Leth, S., et al. Combined effect of Vacc-4x, recombinant human granulocyte macrophage colony-stimulating factor vaccination, and romidepsin on the HIV-1 reservoir (REDUC): a single-arm, phase 1B/2A trial. The Lancet HIV. 3, e463-e472 (2016).
  7. Rasmussen, T. A., et al. Panobinostat, a histone deacetylase inhibitor, for latent-virus reactivation in HIV-infected patients on suppressive antiretroviral therapy: a phase 1/2, single group, clinical trial. The Lancet HIV. 1, e13-e21 (2014).
  8. Søgaard, O. S., et al. The Depsipeptide Romidepsin Reverses HIV-1 Latency In Vivo. PLoS Pathogens. 11, (2015).
  9. Bartholomeeusen, K., Xiang, Y., Fujinaga, K., Peterlin, B. M. Bromodomain and extra-terminal (BET) bromodomain inhibition activate transcription via transient release of Positive Transcription Elongation Factor b (P-TEFb) from 7SK small nuclear ribonucleoprotein. Journal of Biological Chemistry. 287, 36609-36616 (2012).
  10. Boehm, D., et al. BET bromodomain-targeting compounds reactivate HIV from latency via a Tat-independent mechanism. Cell Cycle. 12, 452-462 (2013).
  11. Contreras, X., et al. Suberoylanilide hydroxamic acid reactivates HIV from latently infected cells. Journal of Biological Chemistry. 284 (11), 6782-6789 (2009).
  12. Rasmussen, T. A., et al. Comparison of HDAC inhibitors in clinical development: effect on HIV production in latently infected cells and T-cell activation. Human Vaccines & Immunotherapeutics. 9 (5), 993-1001 (2013).
  13. Wei, D. G., et al. Histone deacetylase inhibitor romidepsin induces HIV expression in CD4 T cells from patients on suppressive antiretroviral therapy at concentrations achieved by clinical dosing. PLoS Pathogens. 10 (4), e1004071 (2014).
  14. Blazkova, J., et al. Effect of histone deacetylase inhibitors on HIV production in latently infected, resting CD4(+) T cells from infected individuals receiving effective antiretroviral therapy. Journal of Infectious Diseases. 206 (5), 765-769 (2012).
  15. Bullen, C. K., Laird, G. M., Durand, C. M., Siliciano, J. D., Siliciano, R. F. New ex vivo approaches distinguish effective and ineffective single agents for reversing HIV-1 latency in vivo. Nature Medicine. 20 (4), 425-429 (2014).
  16. Yukl, S. A., et al. HIV latency in isolated patient CD4+T cells may be due to blocks in HIV transcriptional elongation, completion, and splicing. Science Translational Medicine. 10, (2018).
  17. Lassen, K. G., Ramyar, K. X., Bailey, J. R., Zhou, Y., Siliciano, R. F. Nuclear retention of multiply spliced HIV-1 RNA in resting CD4+T cells. PLoS Pathogens. 2, 0650-0661 (2006).
  18. Alexander, M. R., Wheatley, A. K., Center, R. J., Purcell, D. F. J. Efficient transcription through an intron requires the binding of an Sm-type U1 snRNP with intact stem loop II to the splice donor. Nucleic Acids Research. 38, 3041-3053 (2010).
  19. Anderson, J. L., Johnson, A. T., Howard, J. L., Purcell, D. F. J. Both Linear and Discontinuous Ribosome Scanning Are Used for Translation Initiation from Bicistronic Human Immunodeficiency Virus Type 1 env mRNAs. Journal of Virology. 81, 4664-4676 (2007).
  20. Nikfarjam, L., Farzaneh, P. Prevention and detection of Mycoplasma contamination in cell culture. Cell J. 13 (4), 203-212 (2012).
  21. Khoury, G., et al. HIV latency reversing agents act through Tat post translational modifications. Retrovirology. 15 (1), 36 (2018).
  22. Hakre, S., Chavez, L., Shirakawa, K., Verdin, E. HIV latency: experimental systems and molecular models. FEMS Microbiology Reviews. 36 (3), 706-716 (2012).
  23. Dahabieh, M. S., et al. Direct non-productive HIV-1 infection in a T-cell line is driven by cellular activation state and NFkappaB. Retrovirology. 11, 17 (2014).
  24. Calvanese, V., Chavez, L., Laurent, T., Ding, S., Verdin, E. Dual-color HIV reporters trace a population of latently infected cells and enable their purification. Virology. 446 (1-2), 283-292 (2013).
  25. Chavez, L., Calvanese, V., Verdin, E. HIV Latency Is Established Directly and Early in Both Resting and Activated Primary CD4 T Cells. PLoS Pathogens. 11 (6), e1004955 (2015).
  26. Hunninghake, G. W., Monick, M. M., Liu, B., Stinski, M. F. The promoter-regulatory region of the major immediate-early gene of human cytomegalovirus responds to T-lymphocyte stimulation and contains functional cyclic AMP-response elements. Journal of Virology. 63 (7), 3026-3033 (1989).
  27. Reeves, M., Sinclair, J. Aspects of human cytomegalovirus latency and reactivation. Current Topics in Microbiology and Immunology. 325, 297-313 (2008).
  28. Sambucetti, L. C., Cherrington, J. M., Wilkinson, G. W., Mocarski, E. S. NF-kappa B activation of the cytomegalovirus enhancer is mediated by a viral transactivator and by T cell stimulation. EMBO Journal. 8 (13), 4251-4258 (1989).
  29. Kula, A., et al. Characterization of the HIV-1 RNA associated proteome identifies Matrin 3 as a nuclear cofactor of Rev function. Retrovirology. 8, 60 (2011).
  30. Kula, A., Marcello, A. Dynamic Post-Transcriptional Regulation of HIV-1 Gene Expression. Biology (Basel). 1 (2), 116-133 (2012).
  31. Yedavalli, V. S., Jeang, K. T. Rev-ing up post-transcriptional HIV-1 RNA expression. RNA Biology. 8 (2), 195-199 (2011).
  32. Zolotukhin, A. S., et al. PSF acts through the human immunodeficiency virus type 1 mRNA instability elements to regulate virus expression. Molecular and Cellular Biology. 23 (18), 6618-6630 (2003).
  33. Laird, G. M., Rosenbloom, D. I., Lai, J., Siliciano, R. F., Siliciano, J. D. Measuring the Frequency of Latent HIV-1 in Resting CD4(+) T Cells Using a Limiting Dilution Coculture Assay. Methods in Molecular Biology. 1354, 239-253 (2016).
  34. Cary, D. C., Peterlin, B. M. Targeting the latent reservoir to achieve functional HIV cure. F1000Res. 5, (2016).
  35. Han, Y., et al. Resting CD4+ T cells from human immunodeficiency virus type 1 (HIV-1)-infected individuals carry integrated HIV-1 genomes within actively transcribed host genes. Journal of Virology. 78 (12), 6122-6133 (2004).
  36. Laird, G. M., et al. Ex vivo analysis identifies effective HIV-1 latency – reversing drug combinations. Journal of Clinical Investigation. 125, 1901-1912 (2015).
  37. Lenasi, T., Contreras, X., Peterlin, B. M. Transcriptional interference antagonizes proviral gene expression to promote HIV latency. Cell Host Microbe. 4 (2), 123-133 (2008).

Play Video

Citer Cet Article
Khoury, G., Purcell, D. F. High Throughput In Vitro Assessment of Latency Reversing Agents on HIV Transcription and Splicing. J. Vis. Exp. (143), e58753, doi:10.3791/58753 (2019).

View Video